WIN-PROLOG

7.0
Data Mining Toolkit
by Rebecca Shalfield
WIN-PROLOG 7.0

The contents of this manual describe the product, BDS-PROLOG for Windows (hereinafter called WIN-PROLOG) and one or more of its LPA Toolkits, and are believed correct at the time of going to press. They do not embody a commitment on the part of Logic Programming Associates (LPA), who may from time to time make changes to the specification of the product, in line with their policy of continual improvement. No part of this manual may be reproduced or transmitted in any form, electronic or mechanical, for any purpose without the prior written agreement of LPA.

Copyright (c) 2019 Logic Programming Associates Ltd. All Rights Reserved.

Authors: Rebecca Shalfield, Clive Spenser, Brian D Steel and Alan Westwood

Logic Programming Associates Ltd
PO Box 226
Cranleigh
Surrey
GU6 9DL
England

phone: +44 (0) 20 8871 2016

web site: http://www.lpa.co.uk

01 March, 2019
Contents

Data Mining Toolkit .. 2
Contents ... 3
Introduction to the LPA Data Mining Toolkit .. 7
 What is the LPA Data Mining Toolkit? .. 7
 What’s Included in the Toolkit? .. 7
 What is Data Mining? .. 8
Terminology .. 9
 Example ... 12
Installation .. 15
 Introduction to ProData ... 15
 Installing the LPA Data Mining Toolkit ... 15
 Loading the LPA Data Mining Toolkit ... 15
 Getting the DLL in the Correct Place ... 15
Predicate Flow Chart ... 16
Tutorial ... 17
The Predicates ... 20
 dm_api_analyse_column/3 ... 20
 dm_api_base_table/2 ... 22
 dm_api_conditional_expression/2 .. 23
 dm_api_conditional_expressions/1 .. 25
 dm_api_conditional_statement/4 ... 26
 dm_api_connect/2 .. 31
 dm_api_disconnect/0 .. 32
 dm_api_header/5 ... 33
 dm_api_order_by/2 .. 34
 dm_api_restart_analysis/0 ... 35
 dm_api_shutdown/0 .. 36
 dm_api_startup/0 ... 37
 dm_api_target_expression/2 .. 38
 dm_api_thresholds/4 ... 39
Additional Predicates ... 40
Contents

Data Mining Toolkit

dm_api_analyse_columns/1 ... 40
dm_api_base_table/1 .. 40
dm_api_conditional_expressions/2 .. 40
dm_api_connected/1 .. 41
dm_api_ordered_by/2 .. 41
Built-In Test Predicate .. 43
Source Code .. 44
Execution ... 47
 Calling dm_api_call_startup/0 ... 47
 Calling dm_api_call_connect(‘STATLOG’, ‘ACCESS’) 47
 Calling dm_api_call_base_table(‘GermanCredit’) 47
 Calling dm_api_call_target_expression(“LoanApproved”=2 AND ”Foreign”=’Yes’) ... 47
 Calling dm_api_call_thresholds(5, 10, 10, 25) 47
 Calling dm_api_call_restart_analysis ... 47
 Calling dm_api_call_analyse_column(‘DISCRETE’, ‘PurposeOfLoan’) 47
 Calling dm_api_call_analyse_column(‘DISCRETE’, ‘StatusSex’) 48
 Calling dm_api_call_analyse_column(‘DISCRETE’, ‘Housing’) 48
 Calling dm_api_call_analyse_column(‘CONTINUOUS’, ‘Duration’) 48
 Calling dm_api_call_analyse_column(‘CONTINUOUS’, ‘Age’) 48
 Calling dm_api_call_analyse_column(‘CONTINUOUS’, ‘DateOfBirth’) 48
 Calling dm_api_call_conditional_expressions 48
 Calling dm_api_call_order_by(‘ENTROPY’, ‘ASC’) 48
 Calling (dm_api_call_conditional_expression, fail ; true) 48
 Calling dm_api_call_order_by(‘|SIGNIFICANCE|’, ‘DESC’) 50
 Calling (dm_api_call_conditional_expression, fail ; true) 50
 Calling (dm_api_call_conditional_statement(8, '*'), fail ; true) 51
 Calling (dm_api_call_conditional_statement(8, “CreditHistory” <> ‘Critical’ AND ?’), fail ; true) ... 52
Desktop Data Mining Toolkit Example ... 54
 Loading And Running The Program .. 54
 Selecting The Data Source .. 54
 Selecting The Base Table .. 54
 Confirmation Of The Base Count .. 55
 Selecting The Target Column ... 55
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifying The Target Expression</td>
<td>55</td>
</tr>
<tr>
<td>Confirmation Of The Target Count</td>
<td>56</td>
</tr>
<tr>
<td>Ordering The Solutions</td>
<td>56</td>
</tr>
<tr>
<td>Setting The Thresholds</td>
<td>56</td>
</tr>
<tr>
<td>Selecting The Columns To Analyse</td>
<td>57</td>
</tr>
<tr>
<td>Internal Handling Of Each Column</td>
<td>57</td>
</tr>
<tr>
<td>Solutions Found</td>
<td>58</td>
</tr>
<tr>
<td>Conditional Expressions</td>
<td>58</td>
</tr>
<tr>
<td>Export Confirmation</td>
<td>59</td>
</tr>
<tr>
<td>Selecting The Columns To Be Exported</td>
<td>59</td>
</tr>
<tr>
<td>Viewing The Conditional Expressions In Excel</td>
<td>59</td>
</tr>
<tr>
<td>Conditional Expression</td>
<td>60</td>
</tr>
<tr>
<td>Combining The Conditional Expressions</td>
<td>61</td>
</tr>
<tr>
<td>Conditional Statement</td>
<td>61</td>
</tr>
<tr>
<td>Restarting The Analysis</td>
<td>62</td>
</tr>
<tr>
<td>Exiting The Program</td>
<td>62</td>
</tr>
<tr>
<td>ProWeb Data Mining Toolkit Example</td>
<td>64</td>
</tr>
<tr>
<td>Launch Page</td>
<td>65</td>
</tr>
<tr>
<td>Selecting The Data Source</td>
<td>65</td>
</tr>
<tr>
<td>Selecting The Base Table</td>
<td>65</td>
</tr>
<tr>
<td>Specifying The Target Expression</td>
<td>66</td>
</tr>
<tr>
<td>Ordering The Solutions</td>
<td>68</td>
</tr>
<tr>
<td>Setting The Thresholds</td>
<td>69</td>
</tr>
<tr>
<td>Selecting The Columns To Analyse</td>
<td>70</td>
</tr>
<tr>
<td>Solutions Found</td>
<td>71</td>
</tr>
<tr>
<td>Conditional Expression</td>
<td>72</td>
</tr>
<tr>
<td>Conditional Expressions</td>
<td>72</td>
</tr>
<tr>
<td>Conditional Statement</td>
<td>72</td>
</tr>
<tr>
<td>Conditional Statements</td>
<td>74</td>
</tr>
<tr>
<td>Glossary Of Terms</td>
<td>75</td>
</tr>
<tr>
<td>Appendix A: Extract From ‘An Overview Of Data Mining Techniques’</td>
<td>78</td>
</tr>
<tr>
<td>2.4. Rule Induction</td>
<td>78</td>
</tr>
<tr>
<td>Applying Rule induction to Business</td>
<td>79</td>
</tr>
<tr>
<td>What is a rule?</td>
<td>79</td>
</tr>
<tr>
<td>What to do with a rule</td>
<td>80</td>
</tr>
</tbody>
</table>
Contents

Caveat: Rules do not imply causality ..81
Types of databases used for rule induction..81
Discovery ..82
Prediction ..82
The General Idea ..83
The business importance of accuracy and coverage ..84
Trading off accuracy and coverage is like betting at the track......................84
How to evaluate the rule ...84
Defining “interestingness” ...86
Other measures of usefulness ...86
Rules vs. Decision trees..87
Another commonality between decision trees and rule induction systems88
Appendix B: Setting Up an ODBC Data Source ...89
Introduction to the LPA Data Mining Toolkit

What is the LPA Data Mining Toolkit?
The LPA data mining toolkit is a collection of routines, supplied in the form of an API, which provide advanced data analysis functionality. It is loosely based on association rule mining or rule induction and tries to detect ‘things’ in terms of interestingness.

The toolkit contains no graphics routines, and is designed for embedding within other applications or within a dedicated GUI of your own design.

It accesses its data sources via the ODBC manager and assumes that you have correctly set up your data sources using the ODBC Administrator.

The various routines often return lists and structures which can be manipulated easily by the Prolog developer. This makes the toolkit an ideal basis for Prolog developers to build their own data mining applications.

By combining the data mining toolkit and the Intelligence Server, it is possible to present the data mining toolkit as a COM object for embedding within, say, a VB-oriented application. By combining the data mining toolkit, ProWeb and ProData, it is possible to develop a web-based data mining application.

What’s Included in the Toolkit?
The Data-Mining toolkit includes:

1. An API - A collection of routines and associated documentation for building DM solutions
2. A documented source-code example which uses the API and a variety of dialogs created using the Dialog Editor to construct a simple DM application demo. You can compile and run this code in source mode. You can modify and expand the code.
3. A way to run that demo as if it were a stand-alone application. You can use this to illustrate the concept on any DB.
4. A documented web-based source-code example which uses the API and the ProWeb Toolkit.

Whilst one and two are aimed at application developers and researchers interested in building applications which have some DM component, three is primarily aimed at educators who are engaged in teaching the basics of DM.
What is Data Mining?

Data mining can be defined as:

The non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data.

The word *process* is crucial here, since data mining consists of a number of stages, and requires a particularly high degree of interaction between the system and the analyst. The key stages of data mining as supported by the LPA Data Mining toolkit are:

- **Selection of Data Source**: The first stage is to select the appropriate data for analysis. The toolkit assumes that all joins and exclusions and views are actioned outside of the toolkit. The toolkit works off a single table.

- **Constructing a Target**: This is a simple formula which represents what you are interested in, and is used to focus the data mining investigation.

- **Discovering Patterns**: The main stage of the data mining process, and is where the patterns in the data are found. The first patterns to be discovered are simple atomic conditions of the form:

 \[A \rightarrow Q \text{ and } B \rightarrow Q \text{ and } C \rightarrow Q \text{ etc.} \]

 We can then look to combine these atomic ‘rules’ and investigate the combinations i.e.:

 \[A \& B \rightarrow Q \]

 \[A \& C \rightarrow Q \]

 \[B \& C \rightarrow Q \text{ etc.} \]

 This process can go on until the rules get ‘too’ complicated or coverage diminishes to zero.

The Data Mining toolkit is goal-driven. The whole of this process is iterative, with the analyst returning to previous stages when not satisfied with the results obtained, and requires continuous interaction with and exploration of the intermediate results.
Terminology

Given a rule:

\[
\text{If A & B & C then D}
\]

we can identify two important measures:

1. Truth or Accuracy – How often is the rule correct?
2. Coverage – How often does the rule apply?

Truth indicates how often the conclusion is true given that the conditions are true. i.e. How does:

\[
\text{LHS} \Rightarrow \text{RHS}
\]

Compare to:

\[
\text{LHS} \Rightarrow \neg\text{RHS}
\]

Coverage indicates how much of the database the rule potentially explains. What proportion of all RHS does LHS \(\Rightarrow\) RHS account for?

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>Total number of records in DB</td>
</tr>
<tr>
<td>Conditional</td>
<td>Number of records where conditions (i.e. LHS) hold in DB</td>
</tr>
<tr>
<td>Hit</td>
<td>Number of records where both conditions (i.e. LHS) and conclusion (i.e. RHS) hold</td>
</tr>
<tr>
<td>LHS</td>
<td>Left-hand side of the rule</td>
</tr>
<tr>
<td>RHS</td>
<td>Right-hand side of the rule</td>
</tr>
<tr>
<td>Target</td>
<td>Number of records where conclusion (i.e. RHS) holds in DB</td>
</tr>
<tr>
<td>Target%</td>
<td>(\frac{\text{Target}}{\text{Base}}) * 100</td>
</tr>
<tr>
<td>Miss</td>
<td>(\text{Target} - \text{Hit})</td>
</tr>
<tr>
<td>True</td>
<td>(\text{Hit})</td>
</tr>
<tr>
<td>False</td>
<td>(\text{Conditional} - \text{True})</td>
</tr>
<tr>
<td>Other</td>
<td>(\text{Base} - (\text{Target} + \text{Conditional} - \text{Hit}))</td>
</tr>
<tr>
<td>True%</td>
<td>(\frac{\text{True}}{\text{Conditional}}) * 100</td>
</tr>
<tr>
<td>Hit%</td>
<td>(\frac{\text{Hit}}{\text{Target}}) * 100</td>
</tr>
</tbody>
</table>

Data Mining Toolkit
The principal purpose of data mining is to discover conditions which seem to bear an unnatural affinity with a nominated target condition. The data mining engine will search through all nominated columns and values looking for conditions which satisfy the threshold levels of ‘interestingness’.

A high ‘hit rate’ is desirable; a high truth value is desirable and a reasonable coverage in both the base and target communities is required. Often there is a trade off between high truth (or accuracy) and high coverage (or target). We want rules (conditions) which explain as big a section of our target as possible without too many misses. We can always increase the truth by adding more conditions, but this typically reduces our coverage. By joining rules using OR, we can increase the coverage but at the risk of reducing accuracy.

The internal variables used include:

- **view** - the number of rows in the base view.
- **target** - the number of rows in which the target holds.
- **condition** - the number of rows in which the conditions hold.
- **hit** - the number of rows in which both the target and the conditions holds. Also known as a positive.
- **miss** - the number of rows in which the conditions hold, but the target is not true. Also known as a negative.

The following diagram shows graphically the meaning of the factors used in the display of influential conditions.
Two of the data mining toolkit’s predicates (*dm_api_conditional_expression/2* and *dm_api_conditional_statement/4*) return the Prolog structure, *variables(…)*, which has 14 arguments; *variables/14* has the following form:

```prolog
variables(
    BaseCount, TargetCount, ConditionalCount, HitCount, MissCount, TrueCount, FalseCount, OtherCount, True%, Hit%, Base%, Significance%, AbsSignificance%, Entropy).
```

Significance is an indication of deviation from the norm. This can be either positive (i.e. over representation) or negative (i.e. under representation).

Entropy is a measure of interestingness. The default formula produces a relative value between the number of positives (condition and target holds) and the number of negatives (condition holds but the target does not).

Example

Let’s suppose we are looking for people who bought product X and the following *variables/14* fact was returned to us:

```prolog
```

The arguments are as follows:

```prolog
variables(1st 1000, BaseCount
    2nd 300, TargetCount
    3rd 280, ConditionalCount
    4th 62, HitCount
    5th 238, MissCount
    6th 62, TrueCount
    7th 218, FalseCount
    8th 482, OtherCount
    9th 22.1428571428571, True%
    10th 20.6666666666667, Hit%
    11th 28, Base%
    12th -26.1904761904762, Significance%
    13th 26.1904761904762, AbsSignificance%
    14th -3.06764370101787, Entropy).
```
<table>
<thead>
<tr>
<th>Argument</th>
<th>Variable</th>
</tr>
</thead>
</table>
| 1st | BaseCount = 1000
| i.e. We are looking at 1000 records. |
| 2nd | TargetCount = 300
| i.e. 300 of which bought X. |
| 3rd | ConditionalCount = 280
| e.g. We have found a condition, say, yellow hair, and there are 280 of them. |
| 4th | HitCount = 62
| i.e. 62 of the 280 also brought X. |
| 5th | TargetCount - HitCount = MissCount
| 300 - 62 = 238
| e.g. There's another 238 people who bought X but don't have, say, yellow hair. |
| 6th | HitCount = TrueCount
| 62 = 62 |
| 7th | ConditionalCount - TrueCount = FalseCount
| 280 - 62 = 218
| e.g. 218 people with say, yellow hair, did not buy X. |
| 8th | BaseCount – (TargetCount + ConditionalCount – HitCount) = OtherCount
| 1000 – (300 + 280 – 62) = 482
| e.g. There's 482 people without yellow hair or buying X. |
| 9th | (TrueCount / ConditionalCount) * 100 = True% (i.e. Truth)
| (62 / 280) * 100 = 22.1428571428571%
| e.g. What's the percentage of people with yellow hair buying product X? |
| 10th | (HitCount / TargetCount) * 100 = Hit% (i.e. Coverage)
| (62 / 300) * 100 = 20.6666666666667%
| e.g. What's the percentage of those buying product X and having, say, yellow hair? |
| 11th | (ConditionalCount / BaseCount) * 100 = Base%
| (280 / 1000) * 100 = 28%
| e.g. What percentage of the 'world' have the condition, say, yellow hair? |
| 12th | ((Hit% - Base%) / Base%) * 100 = Significance%
| ((20.6666666666667 – 28) / 28) * 100 = -26.1904761904762% |
Terminology

<table>
<thead>
<tr>
<th>Step</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>13th</td>
<td>[(\frac{\text{True Count}}{\text{Base Count}}) - \frac{\text{False Count}}{\text{Base Count}} - \frac{\text{Miss Count}}{\text{Base Count}} - \frac{\text{Other Count}}{\text{Base Count}}] = \text{Entropy}</td>
</tr>
<tr>
<td>14th</td>
<td>[\ln\left(\frac{62}{1000} \right) - \ln\left(\frac{218}{1000} \right) - \ln\left(\frac{238}{1000} \right) - \ln\left(\frac{482}{1000} \right)] = -3.06764370101787</td>
</tr>
</tbody>
</table>

- \(\text{(Target / Base)} \times 100 = \text{Target\%} \)
- \(\frac{300}{1000} \times 100 = 30\% \)
- e.g. Target\% means what percentage of people buy product X?
- \(\frac{(\text{True\%} - \text{Target\%})}{\text{Target\%}} \times 100 = \text{Significance\%} \)
- \(\frac{(22.1428571428571 - 30)}{30} \times 100 = -26.1904761904762\% \)

13th \(\text{abs}(\text{Significance\%}) = \text{AbsSignificance\%} \)

14th \(\text{abs}(-26.1904761904762) = 26.1904761904762\% \)
Installation

Introduction to ProData

The data mining toolkit itself provides no predicates for general purpose programming access to ODBC and SQL, such as getting schema information or adding, deleting, updating records or tables.

It is assumed that the data mining toolkit will be used in conjunction with ProData. ProData provides general purpose programming access to ODBC and SQL. This allows you to interrogate data sources and their schemas, and build data dictionaries in Prolog.

You are referred to the "ProData Interface" manual for further information.

Installing the LPA Data Mining Toolkit

The data mining toolkit is installed along with WIN-PROLOG itself; just ensure that the 'Datamite API' component is enabled and selected. If installed correctly, you should have a Datamite folder, containing two files, within WIN-PROLOG's root folder.

Loading the LPA Data Mining Toolkit

To load the data mining toolkit, execute the following from the WIN-PROLOG command line:

?- ensure_loaded(prolog('datamite\dm_api')). <enter>

Getting the DLL in the Correct Place

The data mining toolkit requires the file, LPADBW.DLL, to be present in the WIN-PROLOG root directory.

When ProData is installed, LPADBW.DLL is automatically placed in the WIN-PROLOG root directory.

When installing the data mining toolkit without also installing ProData; LPADBW.DLL is placed in the Datamite directory within the WIN-PROLOG root directory; you just need to move LPADBW.DLL from the Datamite directory into the WIN-PROLOG root directory.

Data Mining Toolkit
Predicate Flow Chart

START

Start

ensure_loaded('datamite:dm_api').

dm_api_startup/0

dm_api_test/0

dm_api_header/5

Initialise

dm_api_thresholds/4

dm_api_connect/2

Set Up Target

dm_api_base_table/2

dm_api_target_expression/2

dm_api_order_by/2

Analyse

dm_api_restart_analysis/0

dm_api_analyse_column/3

dm_api_conditional_expressions/1

dm_api_conditional_expression/2

dm_api_conditional_statement/4

Finish

dm_api_disconnect/0

dm_api_shutdown/0

END
Tutorial

First we need to load the Data Mining Toolkit into WIN-PROLOG:

`?- ensure_loaded(prolog('datamite\dm_api')).` <enter>

If you have the ProData Interface Toolkit, you might like to load this as well:

`?- ensure_loaded(system(dblink)).` <enter>

We next need to start up the Data Mining Toolkit:

`?- dm_api_startup.` <enter>

If `dm_api_startup/0` fails, ensure you have the file, LPADBW.DLL, in WIN-PROLOG's root directory.

We next need to connect to an ODBC data source. Should you need to get a list of ODBC data sources currently available, Prodata's `db_show_schema/1` predicate will help:

`?- db_show_schema(sources).` <enter>

The Data Mining Toolkit's `dm_api_connect/2` predicate allows us to connect to an ODBC data source:

`?- dm_api_connect(`MyDataBase`, `ACCESS`).` <enter>

We next need to specify a table within our chosen ODBC data source to be the base table. Should you need to get a list of tables within a specified ODBC data source, Prodata's `db_show_schema/1` predicate will help:

`?- db_show_schema(user).` <enter>

Let's assume we want to mine the table, MyTable, which contains the following data:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sex</th>
<th>Pay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>Male</td>
<td>17500</td>
</tr>
<tr>
<td>Bill</td>
<td>Male</td>
<td>20000</td>
</tr>
<tr>
<td>Jack</td>
<td>Male</td>
<td>17500</td>
</tr>
<tr>
<td>Wendy</td>
<td>Female</td>
<td>22000</td>
</tr>
<tr>
<td>Martin</td>
<td>Male</td>
<td>35000</td>
</tr>
<tr>
<td>Joan</td>
<td>Female</td>
<td>30000</td>
</tr>
<tr>
<td>Richard</td>
<td>Male</td>
<td>22000</td>
</tr>
</tbody>
</table>

The Data Mining Toolkit's `dm_api_base_table/2` predicate allows us to specify the table we want to mine.
wish to mine within our chosen ODBC data source:

?- \texttt{dm_api_base_table(`MyTable`, BaseCount).} \texttt{<enter>}
\texttt{BaseCount = 7}

The value assigned to the variable, BaseCount, is the number of records in the base table, MyTable.

Next, we need to specify our target expression:

?- \texttt{dm_api_target_expression(`Sex = 'Male'`, TargetCount).} \texttt{<enter>}
\texttt{TargetCount = 5}

The value assigned to the variable, TargetCount, is the number of records in the MyTable table where the given expression (i.e. `Sex = 'Male'`) holds.

What we have done so far with the Data Mining Toolkit is equivalent to the following ProData \texttt{db_sql_select/2} call:

?- \texttt{db_sql_select(`SELECT COUNT(*) FROM MyTable WHERE Sex = 'Male'`, [TargetCount]).} \texttt{<enter>}
\texttt{TargetCount = 5}

We can now analyse the Pay column to see how it relates to our target expression:

?- \texttt{dm_api_analyse_column(`discrete`, `Pay`, NumberOfSolutions).} \texttt{<enter>}
\texttt{NumberOfSolutions = 4}

The value assigned to the variable, NumberOfSolutions, equals the number of discrete values in the Pay column (i.e. 17500, 20000, 22000 and 35000) where the target expression (i.e. `Sex = 'Male'`) holds.

We could also analyse the Name column to see how it relates to the target expression:

?- \texttt{dm_api_analyse_column(`discrete`, `Name`, NumberOfSolutions).} \texttt{<enter>}
\texttt{NumberOfSolutions = 5}

The value assigned to the variable, NumberOfSolutions, equals the number of discrete values in the Name column (i.e. 'Fred', 'Bill', 'Jack', 'Martin' and 'Richard') where the target expression (i.e. `Sex = 'Male'`) holds.

For completeness, we could also try analysing the Sex column to see how it relates to the target expression:

?- \texttt{dm_api_analyse_column(`discrete`, `Sex`, NumberOfSolutions).} \texttt{<enter>}
\texttt{NumberOfSolutions = 1}

As you would expect, the value assigned to the variable, NumberOfSolutions, equals the number of discrete values in the Sex column (i.e. 'Male') where the target expression (i.e. `Sex = 'Male'`) holds.

The Data Mining Toolkit is now holding a number of solutions for us. Before we can get such solutions back, we need to tell it in what order we want such solutions to be...
The above `dm_api_order_by/2` call states that we want the solutions returned in ascending hit count order; hit being one of 15 possible values.

Let's ask the Data Mining Toolkit what the output will be when Pay = 17500:

```prolog
?- dm_api_conditional_statement( 1, `Pay = 17500`, ConditionalStatement, Variables ). <enter>
ConditionalStatement = `Pay = 17500` , Variables = variables(7,5,2,2,3,2,0,2,100,40,28.5714285714286,40,40,-2.53506300925521)
```

The returned `variables/14` fact tells us the following information:

- There are 7 records in the table, MyTable.
- There are 5 records where the target expression (i.e. `Sex = 'Male'`) holds.
- There are 2 records where the condition (i.e. `Pay = 17500`) holds.
- There are 2 records where both the target expression (i.e. `Sex = 'Male'`) and the condition (i.e. `Pay = 17500`) hold.
- There are 3 records where the target expression (i.e. `Sex = 'Male'`) holds but the condition (i.e. `Pay = 17500`) did not hold.
- There are 2 records where both the target expression (i.e. `Sex = 'Male'`) and the condition (i.e. `Pay = 17500`) hold.
- There are 0 records where the condition (i.e. `Pay = 17500`) holds but the target expression (i.e. `Sex = 'Male'`) did not hold.
- The other counts equal 2.
- The true percentage is 100%.
- The hit percentage is 40%.
- The base percentage is 28.6%.
- 40 is the significance.
- 40 is the absolute significance.
- -2.53506300925521 is the entropy.

We next need to disconnect from the ODBC data source:

```prolog
?- dm_api_disconnect. <enter>
```

We finally need to shut down the Data Mining Toolkit:

```prolog
?- dm_api_shutdown. <enter>
```
The Predicates

dm_api_analyse_column/3

Predicate

dm_api_analyse_column(+Mode, +ColumnName, -Solutions)

Description

Analyse a particular column in the base (target) table (set using dm_api_base_table/2) with respect to the target condition (set using dm_api_target_expression/2).

Arguments

+Mode STRING The mode of analysis:
 - `discrete` or `DISCRETE` - Find individual column values that are significant
 - `continuous` or `CONTINUOUS` - Find sub-ranges of column values that are significant

+ColumnName STRING The name of the column in the target table to be analysed

-Solutions INTEGER The total number of individual values (discrete analysis) or sub-range of values (continuous analysis) that were found to be significant

Examples

?- dm_api_startup,
 dm_api_connect(`StatLog`, `ACCESS`),
 dm_api_base_table(`GermanCredit`, _),
 dm_api_target_expression(`"LoanApproved"=2 AND "Foreign"='Yes'`, _),
 dm_api_analyse_column(`discrete`, `PurposeOfLoan`, Solutions). <enter>
Solutions = 2

?- dm_api_analyse_column(`discrete`, `Housing`, Solutions). <enter>
Solutions = 3

?- dm_api_analyse_column(`continuous`, `Duration`, Solutions). <enter>
Solutions = 4
The Predicates

Comments
Use a binary-chop algorithm to determine the sub-ranges of a continuous column.
Binary chop algorithm to determine the sub-ranges of a floating-point or timestamp column which meet the thresholds.
Stitch together contiguous sub-ranges providing they result in a NEW candidate condition! N.B. This operation may result in a new duplicate!
Remove redundant sub-ranges which are subsumed by more specific sub-ranges.

Sequence
The predicates, \texttt{dm_api_base_table/2} and \texttt{dm_api_target_expression/2}, must be called before this one.

Trouble Shooting
If the number of solutions returned is zero, ensure you have declared a target expression (using \texttt{dm_api_target_expression/2}) and/or revise your threshold settings with \texttt{dm_api_thresholds/4}.
You will get a type error 23 if the column being analysed does not support continuous mode. Try placing the \texttt{dm_api_analyse_column/3} call inside a catch:

```prolog
?- ( catch( Error, dm_api_analyse_column( `continuous`, `ProductName`, Solutions ) ),
   Error = 0, !
; dm_api_analyse_column( `discrete`, `ProductName`, Solutions )
).
```

Data Mining Toolkit
dm_api_base_table/2

Predicate

```
dm_api_base_table( +TableName, -BaseCount )
```

Description

Declare which table in the connected database will be mined

Arguments

- `+TableName` STRING The name of the table which is to be mined.
- `-BaseCount` INTEGER The number of records (rows) in the table

Example

```
?- dm_api_startup, dm_api_connect(`StatLog`, `ACCESS`),
   dm_api_base_table(`GermanCredit`, BaseCount). <enter>
BaseCount = 1000
?- listing(data_dm_api_global). <enter>
% data_dm_api_global/3
data_dm_api_global(told, dsn, `StatLog`).
data_dm_api_global(count, base, 1000).
data_dm_api_global(told, base_table, `GermanCredit`).
Yes
```

Sequence

The predicates, `dm_api_startup/0` and `dm_api_connect/2`, must be called before this one.

Trouble Shooting

The first argument, `TableName`, must be an LPA string and NOT an atom.
The Predicates

DM_API_CONDITIONAL_EXPRESSION/2

Predicate dm_api_conditional_expression(-ConditionalExpression,-Variables)

Description Return, through backtracking, each "atomic level" SQL conditional expression (e.g. PurposeOfLoan = 'New Car') that has been found to be 'interesting' following the analysis (using dm_api_analyse_column/3) of one or more columns. The order in which they are returned is determined by dm_api_order_by/2.

Arguments

-ConditionalExpression STRING An SQL statement, representing a significant "atomic level" condition, of the form:

 "ColumnName" = Value
 or
 "ColumnName" BETWEEN LowerValue AND UpperValue

-Variables STRUCTURE A Prolog structure of the form: variables(...) containing the variables.

Example

?- dm_api_startup, dm_api_connect('StatLog', 'Access'), dm_api_base_table('GermanCredit',_), dm_api_target_expression("LoanApproved" = 2,_), dm_api_order_by('entropy', 'asc'), dm_api_analyse_column('discrete', 'PurposeOfLoan',_), dm_api_conditional_expression(Cond, Var). <enter>

Cond = "PurposeOfLoan" = 'New Car', Var = variables(1000, 300, 234, 89, 211, 89, 145, 555, 38.034188034188, 29.6666666666667, 23.4, 26.7806267806268, 26.7806267806268, -3.0398125377716) ;

no

findall((Cond,Var), dm_api_conditional_expression(Cond,Var), Solutions)

Data Mining Toolkit
The predicate, `dm_api_analyse_column/3`, must be called one or more times before this predicate.
dm_api_conditional_expressions/1

Predicate: dm_api_conditional_expressions(_Solutions_)

Description: Return the number of separate conditional expressions that were found to be significant during the analysis of one or more columns. Knowing the number of separate conditional expressions can help when ascertaining the integer to enter as the first argument in a dm_api_conditional_statement/4 call.

Argument: _Solutions_ INTEGER The number of significant conditional expressions

Example:

```prolog
?-dm_api_startup,
   dm_api_connect(`StatLog`,`ACCESS`),
   dm_api_base_table(`GermanCredit`,_),
   dm_api_target_expression(`"LoanApproved"=2`,_),
   dm_api_analyse_column(`discrete`,`PurposeOfLoan`,_),
   dm_api_conditional_expressions(Solutions). <enter>
Solutions = 2

?- dm_api_conditional_expressions( NoOfCondExp ),
   dm_api_conditional_statement( NoOfCondExp,
      "PurposeOfLoan" = 'Television', Cond, Var ). <enter>
```

Sequence: The predicate, dm_api_analyse_column/3, must be called before this one.
The Predicates

dm_api_conditional_statement/4

Predicate

`dm_api_conditional_statement(+TopSolutions, +Mask, -ConditionalStatement, -Variables)`

Description

Return, through backtracking, each significant SQL statement that matches the mask supplied. The order in which they are returned is determined by `dm_api_order_by/2`.

Arguments

- **+TopSolutions** INTEGER > 0 The number of conditional expressions, in the order stated, that should be considered when forming the conditional statements

- **+Mask** STRING A mask using the wildcards ? (replace with a single conditional expression) and * (replace with any combination of conditional expressions using the AND operator) which defines the form of the conditional statement.

- **-ConditionalStatement** STRING An SQL statement matching the mask which is deemed to be significant

- **-Variables** STRUCTURE A Prolog structure of the form:

 `variables(...)`

 containing the variables.
Examples

```prolog
?- dm_api_startup, dm_api_connect('StatLog', 'Access'),
   dm_api_base_table('GermanCredit', _),
   dm_api_target_expression('"LoanApproved" = 2', _),
   dm_api_order_by('entropy', 'asc'),
   dm_api_analyse_column('discrete', 'PurposeOfLoan', _),
   dm_api_conditional_expressions(NoOfCondExp),
   dm_api_conditional_statement(NoOfCondExp, "PurposeOfLoan" = 'Television', Cond, Var).
<enter>

Cond = "PurposeOfLoan" = 'Television',

?- dm_api_conditional_statement(8, "CreditHistory" <> 'Critical' AND ?, Cond, Vars).
<enter>

Cond = "CreditHistory" <> 'Critical' AND "Duration" BETWEEN 18 AND 21,
Vars = variables(1000, 296, 105, 39, 257, 39, 66, 638, 37.14, 13.17, 10.5, 25.48, 25.48, -3.21);
Cond = "CreditHistory" <> 'Critical' AND "Duration" = 12,
Vars = variables(1000, 296, 126, 42, 254, 42, 84, 620, 33.33, 14.18, 12.6, 12.61, 12.61, -3.19);
Cond = "CreditHistory" <> 'Critical' AND "PurposeOfLoan" = 'Furniture',
Vars = variables(1000, 296, 131, 47, 249, 47, 84, 620, 35.87, 15.87, 13.1, 21.20, 21.20, -3.18);
Cond = "CreditHistory" <> 'Critical' AND "Housing" = 'Rent',
Vars = variables(1000, 296, 142, 60, 236, 60, 82, 622, 42.25, 20.27, 14.2, 42.74, 42.74, -3.15);
Cond = "CreditHistory" <> 'Critical' AND "PurposeOfLoan" = 'New Car',
Vars = variables(1000, 296, 156, 69, 227, 69, 87, 617, 44.23, 23.31, 15.6, 49.42, 49.42, -3.12);
Cond = "CreditHistory" <> 'Critical' AND "Age" BETWEEN 19 AND 26,
Vars = variables(1000, 296, 201, 82, 214, 82, 119, 585, 40.79, 27.70, 20.1, 37.82, 37.82, -3.07);
```
Given the following `*`-masked program:

```prolog
star_test :-
    dm_api_startup,
    dm_api_connect( `statlog', `ACCESS' ),
    dm_api_base_table( `GermanCredit', _ ),
    dm_api_target_expression( "LoanApproved" = 2', _ ),
    dm_api_thresholds( 1, 1, 1, 1 ),
    dm_api_order_by( `base', `asc' ),
    dm_api_analyse_column( `discrete', `PurposeOfLoan', _ ),
    dm_api_analyse_column( `discrete', `StatusSex', _ ),
    dm_api_conditional_expressions( NoOfCondExps ),
    forall( data_dm_api_global( conditional_expression(_, _), CondExp-_ ),
        { write( CondExp ),
          nl
        },
        nl,
        dm_api_conditional_statement( NoOfCondExps, `*', CondState, _ ),
        write( CondState ),
        nl,
        fail.

star_test :-
    dm_api_shutdown,
    dm_api_disconnect.
```

Data Mining Toolkit
The following conditional expressions and conditional statements (shown in unsorted order due to order by `base` and `asc`) are generated:

?- star_test. <enter>

```
"PurposeOfLoan" = 'Appliance'
"PurposeOfLoan" = 'Business'
"PurposeOfLoan" = 'Education'
"PurposeOfLoan" = 'Furniture'
"PurposeOfLoan" = 'New Car'
"PurposeOfLoan" = 'Other'
"PurposeOfLoan" = 'Repairs'
"PurposeOfLoan" = 'Television'
"PurposeOfLoan" = 'Used Car'
"StatusSex" = 'Divorced Male'
"StatusSex" = 'Married Male'
"StatusSex" = 'Married/Divorced Female'
"StatusSex" = 'Single Male'

"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Divorced Male'
"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Divorced Male'
"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Divorced Male'
"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Married Male'
"PurposeOfLoan" = 'Television' AND "StatusSex" = 'Married Male'

"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Married/Divorced Female'
"PurposeOfLoan" = 'Education' AND "StatusSex" = 'Married/Divorced Female'
"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Married/Divorced Female'
"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Married/Divorced Female'
"PurposeOfLoan" = 'Television' AND "StatusSex" = 'Married/Divorced Female'

"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Single Male'
"PurposeOfLoan" = 'Education' AND "StatusSex" = 'Single Male'
"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Single Male'
"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Single Male'
"PurposeOfLoan" = 'Repairs' AND "StatusSex" = 'Single Male'
"PurposeOfLoan" = 'Television' AND "StatusSex" = 'Single Male'
"PurposeOfLoan" = 'Used Car' AND "StatusSex" = 'Single Male'
```

no
The Predicates

Each combination of one "PurposeOfLoan" = <value> and one "StatusSex" = <value> is being considered by the Datamining toolkit but some fail to meet the thresholds and are internally rejected. The following 'trace' gives you a feel for what is happening inside \texttt{dm_api_conditional_statement/4} when given a `*` as the mask; the failed combinations are shown in bold:

\begin{verbatim}
TRYING :"PurposeOfLoan" = 'Appliance' AND "StatusSex" = 'Divorced Male'
TRYING :"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Divorced Male'
SUCCESS:"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Divorced Male'
TRYING :"PurposeOfLoan" = 'Education' AND "StatusSex" = 'Divorced Male'
TRYING :"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Divorced Male'
SUCCESS:"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Divorced Male'
TRYING :"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Divorced Male'
SUCCESS:"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Divorced Male'
TRYING :"PurposeOfLoan" = 'Other' AND "StatusSex" = 'Divorced Male'
TRYING :"PurposeOfLoan" = 'Repairs' AND "StatusSex" = 'Divorced Male'
SUCCESS:"PurposeOfLoan" = 'Repairs' AND "StatusSex" = 'Divorced Male'
TRYING :"PurposeOfLoan" = 'Television' AND "StatusSex" = 'Divorced Male'
SUCCESS:"PurposeOfLoan" = 'Television' AND "StatusSex" = 'Divorced Male'
TRYING :"PurposeOfLoan" = 'Appliance' AND "StatusSex" = 'Married Male'
TRYING :"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Married Male'
SUCCESS:"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Married Male'
TRYING :"PurposeOfLoan" = 'Education' AND "StatusSex" = 'Married Male'
TRYING :"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Married Male'
SUCCESS:"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Married Male'
TRYING :"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Married Male'
SUCCESS:"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Married Male'
TRYING :"PurposeOfLoan" = 'Other' AND "StatusSex" = 'Married Male'
TRYING :"PurposeOfLoan" = 'Repairs' AND "StatusSex" = 'Married Male'
SUCCESS:"PurposeOfLoan" = 'Repairs' AND "StatusSex" = 'Married Male'
TRYING :"PurposeOfLoan" = 'Television' AND "StatusSex" = 'Married Male'
SUCCESS:"PurposeOfLoan" = 'Television' AND "StatusSex" = 'Married Male'
TRYING :"PurposeOfLoan" = 'Appliance' AND "StatusSex" = 'Married/Divorced Female'
SUCCESS:"PurposeOfLoan" = 'Appliance' AND "StatusSex" = 'Married/Divorced Female'
TRYING :"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Married/Divorced Female'
SUCCESS:"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Married/Divorced Female'
TRYING :"PurposeOfLoan" = 'Education' AND "StatusSex" = 'Married/Divorced Female'
SUCCESS:"PurposeOfLoan" = 'Education' AND "StatusSex" = 'Married/Divorced Female'
TRYING :"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Married/Divorced Female'
SUCCESS:"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Married/Divorced Female'
TRYING :"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Married/Divorced Female'
SUCCESS:"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Married/Divorced Female'
TRYING :"PurposeOfLoan" = 'Other' AND "StatusSex" = 'Married/Divorced Female'
TRYING :"PurposeOfLoan" = 'Repairs' AND "StatusSex" = 'Married/Divorced Female'
SUCCESS:"PurposeOfLoan" = 'Repairs' AND "StatusSex" = 'Married/Divorced Female'
TRYING :"PurposeOfLoan" = 'Television' AND "StatusSex" = 'Married/Divorced Female'
SUCCESS:"PurposeOfLoan" = 'Television' AND "StatusSex" = 'Married/Divorced Female'
TRYING :"PurposeOfLoan" = 'Appliance' AND "StatusSex" = 'Single Male'
SUCCESS:"PurposeOfLoan" = 'Appliance' AND "StatusSex" = 'Single Male'
TRYING :"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Single Male'
SUCCESS:"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Single Male'
TRYING :"PurposeOfLoan" = 'Education' AND "StatusSex" = 'Single Male'
SUCCESS:"PurposeOfLoan" = 'Education' AND "StatusSex" = 'Single Male'
TRYING :"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Single Male'
SUCCESS:"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Single Male'
TRYING :"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Single Male'
SUCCESS:"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Single Male'
TRYING :"PurposeOfLoan" = 'Other' AND "StatusSex" = 'Single Male'
TRYING :"PurposeOfLoan" = 'Repairs' AND "StatusSex" = 'Single Male'
SUCCESS:"PurposeOfLoan" = 'Repairs' AND "StatusSex" = 'Single Male'
TRYING :"PurposeOfLoan" = 'Television' AND "StatusSex" = 'Single Male'
SUCCESS:"PurposeOfLoan" = 'Television' AND "StatusSex" = 'Single Male'
TRYING :"PurposeOfLoan" = 'Appliance' AND "StatusSex" = 'Single Male'
SUCCESS:"PurposeOfLoan" = 'Appliance' AND "StatusSex" = 'Single Male'
TRYING :"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Single Male'
SUCCESS:"PurposeOfLoan" = 'Business' AND "StatusSex" = 'Single Male'
TRYING :"PurposeOfLoan" = 'Education' AND "StatusSex" = 'Single Male'
SUCCESS:"PurposeOfLoan" = 'Education' AND "StatusSex" = 'Single Male'
TRYING :"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Single Male'
SUCCESS:"PurposeOfLoan" = 'Furniture' AND "StatusSex" = 'Single Male'
TRYING :"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Single Male'
SUCCESS:"PurposeOfLoan" = 'New Car' AND "StatusSex" = 'Single Male'
\end{verbatim}

Sequence

The predicates, \texttt{dm_api_order_by/2} and \texttt{dm_api_analyse_columns/3}, must be called before this one.

Trouble Shooting

This predicate will fail if no conditional expressions exist in memory.
The Predicates

dm_api_connect/2

Predicate dm_api_connect(+DSN, +Driver)
Description Connect to a named data source using the named driver.
Arguments +DSN STRING The name of the ODBC data source.
 +Driver STRING The name of the ODBC database driver:
 ANSI : American National Standards Institute
 ACCESS : Microsoft Access(r)
 SQL SERVER : Microsoft SQL Server(r)
 ORACLE : Oracle(r)
 DB2 : IBM DB2(r)
Examples ?-dm_api_startup, dm_api_connect(`StatLog`, `ACCESS`),
 dm_api_disconnect, dm_api_shutdown. <enter> yes
 ?-dm_api_connect(`StatLog`, `ACCESS`). <enter> yes
 ?-listing(data_dm_api_global). <enter>
 data_dm_api_global(told, dsn, `StatLog`).
 ?-dm_api_connect(`Northwind`, `ACCESS`). <enter> yes
 ?-listing(data_sql_dsn_connection). <enter>
 % data_sql_dsn_connection/3
data_sql_dsn_connection(`Northwind',ms_jet,`2`).
data_sql_dsn_connection(`StatLog',ms_jet,`1`).
 Yes
 ?-dm_api_connect(`Test;PWD=rhubarb`, `ACCESS`). <enter> yes
Sequence The predicate, dm_api_startup/0, must be called before this one.
Trouble Shooting The two arguments must be entered as LPA string data types and NOT atoms.

dm_api_disconnect/0

<table>
<thead>
<tr>
<th>Predicate</th>
<th>dm_api_disconnect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Disconnect from the last data source connected to via a call to dm_api_connect/2</td>
</tr>
<tr>
<td>Example</td>
<td>?- dm_api_startup, dm_api_connect(<code>StatLog</code>, <code>ACCESS</code>), dm_api_disconnect, dm_api_shutdown. <enter> yes</td>
</tr>
<tr>
<td>Sequence</td>
<td>The predicate, dm_api_connect/2, must be called before this one.</td>
</tr>
<tr>
<td>Trouble Shooting</td>
<td>If you nest two or more dm_api_connect/2 ... dm_api_disconnect/0 calls, you may need to re-execute the outer dm_api_connect/2 call(s) before dm_api_disconnect/0 will work.</td>
</tr>
</tbody>
</table>
The Predicates

dm_api_header/5

Predicate dm_api_header(-Application, -Copyright, -Author, -VersionNumber, -VersionDate)

Purpose Returns the application's name, copyright information, author's name, version number and version's date.

Arguments

-Application STRING The name of the application.
-Copyright STRING The copyright notice.
-Author STRING The name of the author(s).
-VersionNumber STRING The current version number.
-VersionDate STRING The date of the current version.

Example

?-dm_api_header(Application, Copyright, Author, Version, Date).
<enter>
Application = `DataMite(TM) Application Programmer's Interface` ,
Copyright = `Copyright Logic Programming Associates 1995-2000` ,
Author = `Dr Phil Vasey` ,
Version = `1.66` ,
Date = `15 JUN 2000`

Sequence This predicate can be called at any time.
dm_api_order_by/2

Predicate

dm_api_order_by(+Variable, +AscDesc)

Description

Declare the order in which conditional expressions, etc. will be returned

Arguments

+Variable STRING The name of a variable in the set `{ `base`, `target`, `conditional`, `hit`, `miss`, `true`, `false`, `other`, `true%`, `hit%`, `base%`, `significance%`, `absolute_significance%`, `|significance%|`, `entropy` }

+AscDesc STRING Either `ASC` for an ascending order or `DESC` for a descending order

Examples

?-dm_api_startup, dm_api_connect(`StatLog`, `Access`), dm_api_base_table(`GermanCredit`, _), dm_api_target_expression(`"LoanApproved" = 2`, _), dm_api_order_by(`entropy`, `asc`), dm_api_analyse_column(`discrete`, `PurposeOfLoan`, _), dm_api_conditional_expression(Cond, Var).

Cond = `"PurposeOfLoan" = 'New Car'`, Var = variables(1000, 300, 234, 89, 211, 89, 145, 555, 38.034188034188, 29.6666666666667, 23.4, 26.7806267806268, 26.7806267806268, -3.03981225377716) ;

no

?-dm_api_order_by(`ENTROPY`, `DESC`).

yes

Sequence

This predicate can be called at any time but must be executed prior to calling `dm_api_conditional_expression/2` or `dm_api_conditional_statement/4`.

Data Mining Toolkit
dm_api_restart_analysis/0

Predicate
dm_api_restart_analysis

Description
Restart the mining process for the target condition in the target table of the connected database. `dm_api_restart_analysis/0` actually retracts all the `data_dm_api_global(conditional_expression(,_,_))` facts, such as those asserted by `dm_api_analyse_column/3`.

Example
```
?-dm_api_analyse_column( `discrete`, `PurposeOfLoan`, _ ), dm_api_restart_analysis. <enter>
```
```
yes
```

Sequence
The predicate, `dm_api_analyse_column/3`, must be called before this one.
The Predicates

dm_api_shutdown/0

Predicate dm_api_shutdown

Description Shutdown procedure which terminates the data mining toolkit

Side-Effect ODBC Closes the ODBC library

Example

?- dm_api_startup, dm_api_shutdown. <enter>

yes

Sequence The predicate, dm_api_startup/0, must be called before this one, otherwise an error will be generated. Placing the call to dm_api_shutdown/0 inside a catch/2 may solve your problem:

?- catch(Error, dm_api_shutdown). <enter>
dm_api_startup/0

Predicate
dm_api_startup

Description
Startup procedure which initialises the data mining toolkit

Side-Effects
Prolog Creates all the dynamic predicates used to store information.
ODBC Opens the ODBC library

Example
?-dm_api_startup, dm_api_shutdown. <enter>

yes

Sequence
This is the first Datamining toolkit predicate to be called.
The Predicates

dm_api_target_expression/2

Predicate

- `dm_api_target_expression(+TargetExpression, -TargetCount)`

Description

Declare the SQL target expression

Arguments

- `+TargetExpression` STRING The SQL expression which forms the target of the mining process.
- `-TargetCount` INTEGER The number of rows in the base table where the target expression applies

Examples

```
?- dm_api_startup,
   dm_api_connect(`StatLog`, `Access`),
   dm_api_base_table(`GermanCredit`, BaseCount ),
   dm_api_target_expression( `"LoanApproved" = 2` ,
   TargetCount ). <enter>
BaseCount = 1000,
TargetCount = 300

?- dm_api_startup,
   dm_api_connect(`StatLog`, `Access`),
   dm_api_base_table(`GermanCredit`,_),
   dm_api_target_expression( `"LoanApproved" = 2 AND
"Foreign" = 'Yes'` , TargetCount ). <enter>
TargetCount = 296
```

Comparison To ProData

This is equivalent to the ProData predicate:

```
?- db_sql_select( `SELECT COUNT(*) FROM GermanCredit
WHERE LoanApproved = 2`, [TargetCount] ). <enter>
TargetCount = 300
```

Sequence

The predicate, `dm_api_base_table/2`, must be called before this one.
dm_api_thresholds/4

Predicate

`dm_api_thresholds(+SignificanceThreshold, +BaseThreshold, +HitThreshold, +TrueThreshold)`

Description

Set the minimum threshold percentages that determine whether or not something is deemed to be ‘interesting’

Arguments

+ `+SignificanceThreshold` NUMBER [0-100] The minimum threshold for the `AbsoluteSignificance%` variable (the variables fact’s 13th argument)

+ `+BaseThreshold` NUMBER [0-100] The minimum threshold for the `Base%` variable (the variables fact’s 11th argument)

+ `+HitThreshold` NUMBER [0-100] The minimum threshold for the `Hit%` variable (the variables fact’s 10th argument)

+ `+TrueThreshold` NUMBER [0-100] The minimum threshold for the `True%` variable (the variables fact’s 9th argument)

Example

```
?- dm_api_thresholds(25,10,5,75). <enter>
yes
?- listing(data_dm_api_global). <enter>
% data_dm_api_global/3
data_dm_api_global( threshold, 'absolute_significance%', 25 ).
data_dm_api_global( threshold, 'base%', 10 ).
data_dm_api_global( threshold, 'hit%', 5 ).
data_dm_api_global( threshold, 'true%', 75 ).
```

Sequence

This predicate can be called at any time.
Additional Predicates

This section gives definitions for a number of additional predicates you may find useful.

dm_api_analyse_columns/1

This `dm_api_analyse_columns(-AllSolutions)` predicate, defined as follows, allows you to analyse all the columns in the base table and get back a count of all the conditional expressions found (just like `dm_api_conditional_expressions/1`).

```
    dm_api_analyse_columns( AllSolutions ) :-
        data_dm_api_global( told, base_table, BaseTable ),
        db_get_schema( columns( BaseTable ), ColumnNames ),
        forall( member( ColumnName, ColumnNames ),
            ( atom_string( ColumnName, ColumnNameAsString ),
            ( catch( Error, dm_api_analyse_column( `continuous`,
                ColumnNameAsString, _ ) ),
            Error = 0,
            !
            ; dm_api_analyse_column( `discrete`, ColumnNameAsString,
                _ )
            ),
            dm_api_conditional_expressions( AllSolutions )).
```

This predicate will only work if ProData is loaded and you have connected to the data source with `db_connect/2`. `db_get_schema/2` is a ProData predicate which returns a list of the columns within a given table.

dm_api_base_table/1

This `dm_api_base_table(-BaseTable)` predicate, defined as follows, allows you to get the name of the base table.

```
    dm_api_base_table( BaseTable ) :-
        one( data_dm_api_global( told, base_table, BaseTable ) ).

?- dm_api_base_table( BaseTable ). <enter>
BaseTable = `products`
```

dm_api_conditional_expressions/2

This `dm_api_conditional_expressions(-NumberOfSolutions, -ConditionalExpressions)` predicate, defined as follows, can be called after one or more `dm_api_analyse_column/3` calls to pick up all the solutions in a single list:

dm_api_conditional_expressions(NumberOfSolutions, ConditionalExpressions) :-
 dm_api_conditional_expressions(NumberOfSolutions),
 findall(ConditionalExpression,
 data_dm_api_global(conditional_expression(_,_), _, ConditionalExpression - _), ConditionalExpressions),
 NumberOfSolutions = 4,

?- dm_api_conditional_expressions(NumberOfSolutions, ConditionalExpressions). <enter>
NumberOfSolutions = 4,

dm_api_connected/1
This dm_api_connected(-DSNs) predicate, defined as follows, allows you to ascertain which data sources you are currently connected to and in what order.

dm_api_connected(DSNs) :-
 findall(DSNsAsString, (data_sql_dsn_connection(DSN, _, _), atom_string(DSN, DSNsAsString)), ReversedDSNs), reverse(ReversedDSNs, DSNs).

?- dm_api_connect(`Statlog`, `ACCESS`). <enter> yes

?- dm_api_connected(DSNs). <enter>
DSNs = [`Statlog`]

?- dm_api_connect(`nwind`, `ACCESS`). <enter> yes

?- dm_api_connected(DSNs). <enter>
DSNs = [`Statlog`, `nwind`]

dm_api_ordered_by/2
This dm_api_ordered_by(-Variable, -AscDesc) predicate, defined as follows, allows you to ascertain the order in which condition expressions, etc. will be returned.
Additional Predicates

dm_api_ordered_by(Variable, AscDesc) :-
 data_dm_api_global(told, order_by_position, OrderByPosition),
 OrderByPositionMinusOne is OrderByPosition - 1,
 member(Variable, [`base`, `target`, `conditional`, `hit`, `miss`, `true`, `false`, `other`, `true%`, `hit%`, `base%`, `significance%`, `absolute_significance%`, `entropy`], OrderByPositionMinusOne),
 data_dm_api_global(told, order_by_direction, OrderByDirection),
 (OrderByDirection = 1 -> AscDesc = `asc` ; AscDesc = `desc`),
 !.

?- dm_api_order_by(`entropy`,`desc`). <enter>
yes

?- dm_api_ordered_by(Variable, AscDesc). <enter>
Variable = `entropy` ,
AscDesc = `desc`
The DM_API.PC file has a built-in test predicate, *dm_api_test/0*. This predicate performs a test of the data mining toolkit using the StatLog MS Access(r) database.
The source code of `dm_api_test/0` is as follows:

```prolog
dm_api_test :-
    dm_api_test( `StatLog`, `ACCESS` ).

dm_api_test( DSN, Driver ) :-
    dm_api_call_startup,
    dm_api_call_connect( DSN, Driver ),
    dm_api_call_base_table( `GermanCredit` ),
    dm_api_call_target_expression( `"LoanApproved" = 2 AND "Foreign" = 'Yes'` ),
    dm_api_call_thresholds( 5, 10, 10, 25 ),
    dm_api_call_restart_analysis,
    dm_api_call_analyse_column( `DISCRETE`, `PurposeOfLoan` ),
    dm_api_call_analyse_column( `DISCRETE`, `StatusSex` ),
    dm_api_call_analyse_column( `DISCRETE`, `Housing` ),
    dm_api_call_analyse_column( `CONTINUOUS`, `Duration` ),
    dm_api_call_analyse_column( `CONTINUOUS`, `Age` ),
    dm_api_call_analyse_column( `CONTINUOUS`, `DateOfBirth` ),
    dm_api_call_analyse_column( `CONTINUOUS`, `CreditHistory` ),
    dm_api_call_analyse_column( `DISCRETE`, `CreditHistory` ),
    dm_api_call_order_by( `ENTROPY`, `ASC` ),
    ( dm_api_call_conditional_expression, fail ; true ),
    dm_api_call_order_by( `SIGNIFICANCE%`, `DESC` ),
    ( dm_api_call_conditional_expression, fail ; true ),
    ( dm_api_call_conditional_statement( 8, `*` ), fail ; true ),
    ( dm_api_call_conditional_statement( 8, `"CreditHistory" <> 'Critical' AND ?` ), fail ; true ),
    true.

dm_api_call_startup :-
    ( dm_api_startup ~> _
        -> write( true )
        ; write( fail )
    ),
    nl.

dm_api_call_connect( DSNstring, Driverstring ) :-
    ( dm_api_connect( DSNstring, Driverstring ) ~> _
        -> write( true )
        ; write( fail )
    ),
    nl.

dm_api_call_base_table( Table ) :-
    ( dm_api_base_table( Table, BaseCount ) ~> _
        -> write( true ),
        fwrite( r, 16, 10, BaseCount )
        ; write( fail )
    ),
    nl.
```

Data Mining Toolkit
dm_api_call_target_expression(TargetExpression) :-
 (dm_api_target_expression(TargetExpression, TargetCount) ~> _ ->
 write(true),
 fwrite(r, 16, 10, TargetCount),
 write(fail)),
 nl.

dm_api_call_thresholds(SignificanceThreshold, BaseThreshold, HitThreshold, TrueThreshold) :-
 (dm_api_thresholds(SignificanceThreshold, BaseThreshold, HitThreshold, TrueThreshold) ~> _ ->
 write(true) ; write(fail)),
 nl.

dm_api_call_restart_analysis :-
 (dm_api_restart_analysis ~> _ ->
 write(true) ; write(fail)),
 nl.

dm_api_call_analyse_column(ModeString, Column) :-
 (dm_api_analyse_column(ModeString, Column, Solutions) ~> _ ->
 write(true),
 fwrite(r, 16, 10, Solutions),
 write(fail)),
 nl.

dm_api_call_conditional_expressions :-
 (dm_api_conditional_expressions(Solutions) ~> _ ->
 write(true),
 fwrite(r, 16, 10, Solutions),
 write(fail)),
 nl.

dm_api_call_conditional_expression :-
 Variables = variables(_BaseCount, _TargetCount, ConditionalCount, HitCount, MissCount, TrueCount, FalseCount, OtherCount, TruePercent, HitPercent, BasePercent, SignificancePercent, AbsSignificancePercent, Entropy),
 (dm_api_conditional_expression(ConditionalExpressionString, Variables) ~> _).
len(ConditionalExpressionString, LenString),
write(true),
fwrite(r, 4, 10, LenString),
write(ConditionalExpressionString),
fwrite(r, 16, 10, ConditionalCount),
fwrite(r, 16, 10, HitCount),
fwrite(r, 16, 10, MissCount),
fwrite(r, 16, 10, TrueCount),
fwrite(r, 16, 10, FalseCount),
fwrite(r, 16, 10, OtherCount),
fwrite(f, 16, 3, TruePercent),
fwrite(f, 16, 3, HitPercent),
fwrite(f, 16, 3, BasePercent),
fwrite(f, 16, 3, SignificancePercent),
fwrite(f, 16, 3, AbsSignificancePercent),
fwrite(f, 16, 3, Entropy)
);
write(fail)
),
nl.

dm_api_call_order_by(VariableString, AscDescString) :-
(dm_api_order_by(VariableString, AscDescString) ~> _
 -> write(true)
 ; write(fail)
),
nl.

dm_api_call_conditional_statement(TopSolutions, Mask) :-
 Variables = variables(_BaseCount,
 _TargetCount,
 ConditionalCount,
 HitCount,
 MissCount,
 TrueCount,
 FalseCount,
 OtherCount,
 TruePercent,
 HitPercent,
 BasePercent,
 SignificancePercent,
 AbsSignificancePercent,
 Entropy
),
 (dm_api_conditional_statement(TopSolutions, Mask, ConditionalStatementString, Variables) ~> _,
 len(ConditionalStatementString, LenString),
 write(true),
 fwrite(r, 4, 10, LenString),
 write(ConditionalStatementString),
 fwrite(r, 16, 10, ConditionalCount),
 fwrite(r, 16, 10, HitCount),
 fwrite(r, 16, 10, MissCount),
 fwrite(r, 16, 10, TrueCount),
 fwrite(r, 16, 10, FalseCount),
 fwrite(r, 16, 10, OtherCount),
 fwrite(f, 16, 3, TruePercent),
 fwrite(f, 16, 3, HitPercent),
 fwrite(f, 16, 3, BasePercent),
 fwrite(f, 16, 3, Entropy)
);
write(fail)
).
fwrite(f, 16, 3, SignificancePercent),
fwrite(f, 16, 3, AbsSignificancePercent),
fwrite(f, 16, 3, Entropy)
;
write(fail)
),
nl.

Execution

We will now execute `dm_api_test/0` for you and document its output in great detail.

?- dm_api_test. <enter>

Calling dm_api_call_startup/0

true

Calling dm_api_call_connect(`STATLOG`, `ACCESS`)

true

Calling dm_api_call_base_table(`GermanCredit`)

true00000000000001000

Note: 1000 records in total.

Calling dm_api_call_target_expression(`"LoanApproved"=2 AND "Foreign"='Yes'`)

true0000000000000000296

Note: 296 records which match the target expression.

Calling dm_api_call_thresholds(5, 10, 10, 25)

true

Note: Set up the minimum values for ‘interestingness’.

Calling dm_api_call_restart_analysis

true

Calling dm_api_call_analyse_column(`DISCRETE`, `PurposeOfLoan`)

true00000000000000002

Note: 2 unique ‘bins’/categories found.
Calling `dm_api_call_analyse_column`(`DISCRETE`, `StatusSex`)
true0000000000000002
Note: 2 unique 'bins'/categories found.

Calling `dm_api_call_analyse_column`(`DISCRETE`, `Housing`)
true0000000000000003
Note: 3 unique 'bins'/categories found.

Calling `dm_api_call_analyse_column`(`CONTINUOUS`, `Duration`)
true0000000000000004
Note: 4 'bins' found.

Calling `dm_api_call_analyse_column`(`CONTINUOUS`, `Age`)
true0000000000000004
Note: 4 'bins' found.

Calling `dm_api_call_analyse_column`(`CONTINUOUS`, `DateOfBirth`)
true0000000000000000
Note: Nothing found.

Calling `dm_api_call_conditional_expressions`
true0000000000000015
Note: 2 + 2 + 3 + 4 + 4 + 0 = 15.

Calling `dm_api_call_order_by`(`ENTROPY`, `ASC`)
true

Calling `(dm_api_call_conditional_expression, fail; true)`
true0018"Housing" =
'Free'00000000001080000000000000044000000000000002520000000000000044
0000000000006400000000000000640 40.741 14.865
10.800 37.638 37.638 -3.204
true0015"Duration" =
180000000000001130000000000000042000000000000025400000000000000420000
00000000007100000000000633 37.168 14.189
11.300 25.568 25.568 -3.203
true0028"Duration" BETWEEN 18 AND 21
true0015"Duration" = 17
true0029"PurposeOfLoan" = 'Furniture'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0023"Age" BETWEEN 19 AND 26
true0023"Age" BETWEEN 39 AND 75
true0039"StatusSex" = 'Married/Divorced Female'
true0023"Age" BETWEEN 19 AND 29
true0027"StatusSex" = 'Single Male'
true0017"Housing" = 'Own'
true0018"Housing" = 'Rent'
true0027"PurposeOfLoan" = 'New Car'
true0028"Duration" BETWEEN 18 AND 48.600 15.393 15.393 -2.804
true0023"Age" BETWEEN 19 AND 51.600 16.541 16.541 -2.775
false
Note: 15 listed.

Calling dm_api_call_order_by(`|SIGNIFICANCE|`, `DESC`)
true
Note: Order now by significance in descending order.

Calling (dm_api_call_conditional_expression, fail ; true)
true0018"Housing" = 'Free' 10.800 37.638 37.638 -3.204
true0023"Age" BETWEEN 19 AND 24.000 32.320 32.320 -3.030
true0018"Housing" = 'Rent' 17.900 38.547 38.547 -3.111
true0027"PurposeOfLoan" = 'New Car' 23.400 37.179 37.179 -3.045
true0015"Duration" = 11.300 37.168 37.168 -3.093
true0023"Age" BETWEEN 19 AND 37.100 34.946 34.946 -2.891
true0039"StatusSex" = 'Married/Divorced Female' 31.000 36.149 36.149 -2.971

Data Mining Toolkit
Built-In Test Predicate

true0023"Age" BETWEEN 19 AND 33
34.496 60.135
51.600 16.541 16.541 -2.775

true0028"Duration" BETWEEN 18 AND 40
34.156 56.081
48.600 15.393 15.393 -2.804

true0028"Duration" BETWEEN 18 AND 21
33.775 17.230
15.100 14.104 14.104 -3.160

true0017"Housing" = 'Own'
71.300 -13.290 13.290 -2.808

true0023"Age" BETWEEN 39 AND 75
32.000 -12.373 12.373 -3.013

true0027"StatusSex" = 'Single Male'
54.800 -9.992 9.992 -2.852

true0015"Duration" = 120
17.900 -7.519 7.519 -3.144

true0029"PurposeOfLoan" = 'Furniture'
18.100 6.391 6.391 -3.129

fail

Note: 15 listed.

Calling (dm_api_call_conditional_statement(8, `*`), fail ; true)
Note: '*' means replace with any combination of conditional expressions using the AND operator.

true0046"Housing" = 'Rent' AND "Age" BETWEEN 19 AND 29
43.363 16.554
17.900 7.519 7.519 -3.144

true0067"Age" BETWEEN 19 AND 26 AND "StatusSex" = 'Married/Divorced Female'
18.100 6.391 6.391 -3.129

Data Mining Toolkit
Built-In Test Predicate

```sql
true0067 "Age" BETWEEN 19 AND 29 AND "StatusSex" = 'Married/Divorced Female'
true0046 "Housing" = 'Rent' AND "Age" BETWEEN 19 AND 33
true0055 "PurposeOfLoan" = 'New Car' AND "Age" BETWEEN 19 AND 33
true0067 "StatusSex" = 'Married/Divorced Female'
true0057 "CreditHistory" <> 'Critical'
true0052 "CreditHistory" <> 'Critical' AND "Housing" = 'Rent'
true0061 "CreditHistory" <> 'Critical' AND "PurposeOfLoan" = 'New Car'
true0057 "CreditHistory" <> 'Critical'
true0073 "CreditHistory" <> 'Critical' AND "StatusSex" = 'Married/Divorced Female'
```

Calling (dm_api_call_conditional_statement(8, `"CreditHistory" <> 'Critical' AND ? `, fail ; true))

```sql
true0057 "CreditHistory" <> 'Critical' AND "Age" BETWEEN 19 AND 29
true0046 "Housing" = 'Rent' AND "Age" BETWEEN 19 AND 33
true0055 "PurposeOfLoan" = 'New Car' AND "Age" BETWEEN 19 AND 33
true0067 "StatusSex" = 'Married/Divorced Female'
true0057 "CreditHistory" <> 'Critical'
true0052 "CreditHistory" <> 'Critical' AND "Housing" = 'Rent'
true0061 "CreditHistory" <> 'Critical' AND "PurposeOfLoan" = 'New Car'
true0057 "CreditHistory" <> 'Critical'
true0073 "CreditHistory" <> 'Critical' AND "StatusSex" = 'Married/Divorced Female'
```

Note: 6 listed.

Calling (dm_api_call_conditional_statement(8, `"CreditHistory" <> 'Critical' AND ? `, fail ; true))

```sql
true0057 "CreditHistory" <> 'Critical' AND "Age" BETWEEN 19 AND 29
true0046 "Housing" = 'Rent' AND "Age" BETWEEN 19 AND 33
true0055 "PurposeOfLoan" = 'New Car' AND "Age" BETWEEN 19 AND 33
true0067 "StatusSex" = 'Married/Divorced Female'
true0057 "CreditHistory" <> 'Critical'
true0052 "CreditHistory" <> 'Critical' AND "Housing" = 'Rent'
true0061 "CreditHistory" <> 'Critical' AND "PurposeOfLoan" = 'New Car'
true0057 "CreditHistory" <> 'Critical'
true0073 "CreditHistory" <> 'Critical' AND "StatusSex" = 'Married/Divorced Female'
```

```
| Age       | Housing   | PurposeOfLoan | StatusSex | CreditHistory | 40.796 | Age BETWEEN 19 AND 29 | 20.100 | Age BETWEEN 19 AND 33 | 10.400 | Age BETWEEN 19 AND 33 | 20.500 | PurposeOfLoan = 'New Car' | 15.600 | StatusSex = 'Married/Divorced Female' | 29.900 | CreditHistory = 'Critical' | 23.100 | CreditHistory = 'Critical' | 40.200 | CreditHistory = 'Critical' | 18.100 |
|-----------|-----------|---------------|-----------|---------------|--------|-----------------------|--------|-----------------------|--------|-----------------------|--------|--------------------------|--------|-------------------------|--------|--------------------------|--------|-------------------------|--------|

**Data Mining Toolkit**
Built-In Test Predicate

fail
yes

Note: CreditHistory was not one of the columns we initially analysed.
Desktop Data Mining Toolkit Example

One of the supplied examples is a Windows Desktop data mining toolkit example (DIALOGDM.PL).

Loading And Running The Program
Launch \texttt{WIN-PROLOG} and load (via the File\Load menu option) the file DIALOGDM.PL from the EXAMPLES\DATAMITE directory; execute the following goal from the Prolog prompt:

\texttt{?- run. <enter>}

Here are a few screenshots of the example in use.

Selecting The Data Source
First of all, you need to select the data source and a driver. The driver field defaults to `ACCESS`, the driver for Microsoft Access.

Selecting The Base Table
Next, you need to select the base table. This is the table you wish to mine.
Confirmation Of The Base Count
This dialog gives confirmation of the base count.

The base count is the number of records in the base table.

Selecting The Target Column
Next, you need to select the target column.

Specifying The Target Expression
Having selected the target column on the previous dialog, you now need to complete the target expression by selecting an SQL comparison type and a value.
Confirmation Of The Target Count
This dialog gives confirmation of the target count.

Click [Continue] to continue or [Back] to return to the Target Column dialog and set a different target expression.

Ordering The Solutions
You next need to specify how you want the solutions ordered when returned to you. Here we have sorted them into descending order by true%.

Setting The Thresholds
You next need to set the four thresholds.
The True threshold is calculated automatically using the formula, \((\text{Target Count} / \text{Base Count}) \times 100\).

**Selecting The Columns To Analyse**

You next need to select one or more columns that you wish to analyse.

We have chosen CreditAmount and Duration.

**Internal Handling Of Each Column**

The values in each selected column are automatically internally handled as either discrete or continuous. This dialog allows you to override the automatically assigned setting for a continuous column in order to treat it as discrete.
Solutions Found
This dialog calls \texttt{dm_api\_analyse\_column/3} one or more times and then tells you how many conditional expressions were found for a particular column during the analysis phase.

Click [Continue] to continue or [Back] to return to the Select Columns dialog and select a different set of columns.

Conditional Expressions
The next screen lists all the conditional expressions found.

Select all the conditional expressions that you are interested in; by default, all conditional
expressions are selected.

**Export Confirmation**
The next dialog asks whether you want to export the selected conditional expressions’ data to a comma-separated-value (CSV) file.

Clicking the [Yes] button takes you to the Export dialog.

**Selecting The Columns To Be Exported**
Select the columns that you want to export.

When you click the [OK] button, the data for the selected columns will be saved as a CSV file named DMDATA.CSV. You will then be taken to the Conditional Expression dialog.

**Viewing The Conditional Expressions In Excel**
The DMDATA.CSV file can be viewed in Excel.
Conditional Expression
Each conditional expression will be shown in its own dialog. Clicking 'Next' takes you to the next conditional expression's dialog. Clicking 'Skip' takes you to the combination stage.
Combining The Conditional Expressions
Confirmation is asked for before combining the conditional expressions to make one or more conditional statements.

Conditional Statement
Each conditional statement will be shown in its own dialog. Clicking 'Next' takes you to the next conditional statement's dialog. Clicking 'Skip' takes you to the restart analysis dialog.
Restarting The Analysis

This dialog allows you to restart the analysis by returning you to the Thresholds dialog.

Exiting The Program

If you click [No], you will be taken to the following dialog:

Clicking [Yes] will exit the program; clicking [No] will rerun the program right from the very beginning.

Data Mining Toolkit
ProWeb Data Mining Toolkit Example

One of the supplied examples is a web-based data mining toolkit example, utilising the LPA products, ProWeb and Prodata, and using Scalable Vector Graphics (SVG). The example is in the file, PW_DMAPI.PL, in the ProWeb\Examples directory. A free SVG plug-in for your web browser is available from the Adobe web site. Here are a few screenshots of the example in use:
Launch Page

Web-Based Data Mining Toolkit Example Launch Page

Selecting The Data Source

Web-Based Data Mining Toolkit Example

ODBC Data Source

ODBC data source:

Driver:

Submit

Selecting The Base Table

Data Mining Toolkit
Web-Based Data Mining Toolkit Example

Base Table

Select table:

GermanCredit

Submit

Specifying The Target Expression
ProWeb Data Mining Toolkit Example

Target Expression

Base table: GermanCredit

Base count: 1000

Columns:
- Age
- CheckAccount
- CreditAmount
- CreditHistory
- DOB
- Dependents
- Duration
- Foreign
- Guarantors
- Housing
- InstallmentRate
- Job
- NumberOfCredits
- OtherPlans
- PresentEmployment
- PresentResidence
- Property
- PurposeOfLoan
- SavingsAccount
- StatusSex
- Target
- Telephone

Set target expression:

```
target = 1
```
Ordering The Solutions

Web-Based Data Mining Toolkit Example

Order By

Target count: 700

Order by:

hit% desc

Submit
Setting The Thresholds

Web-Based Data Mining Toolkit Example

Thresholds

Minimum threshold of 1 % for AbsoluteSignificance%
Minimum threshold of 1 % for Base%
Minimum threshold of 1 % for Hit%
Minimum threshold of 1 % for True%
Selecting The Columns To Analyse

Web-Based Data Mining Toolkit Example

Analyze Column

<table>
<thead>
<tr>
<th>Column</th>
<th>Include Discrete</th>
<th>Include Continuous</th>
<th>Exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td>CheckAccount</td>
<td>○ discrete</td>
<td>○ continuous</td>
<td>○ exclude</td>
</tr>
<tr>
<td>Duration</td>
<td>○ discrete</td>
<td>○ continuous</td>
<td>○ exclude</td>
</tr>
<tr>
<td>CreditHistory</td>
<td>○ discrete</td>
<td>○ continuous</td>
<td>○ exclude</td>
</tr>
<tr>
<td>PurposeOfLoan</td>
<td>○ discrete</td>
<td>○ continuous</td>
<td>○ exclude</td>
</tr>
<tr>
<td>CreditAmount</td>
<td>○ discrete</td>
<td>○ continuous</td>
<td>○ exclude</td>
</tr>
<tr>
<td>SavingsAccount</td>
<td>○ discrete</td>
<td>○ continuous</td>
<td>○ exclude</td>
</tr>
<tr>
<td>PresentEmployment</td>
<td>○ discrete</td>
<td>○ continuous</td>
<td>○ exclude</td>
</tr>
<tr>
<td>InstallmentRate</td>
<td>○ discrete</td>
<td>○ continuous</td>
<td>○ exclude</td>
</tr>
<tr>
<td>StatusSex</td>
<td>○ discrete</td>
<td>○ continuous</td>
<td>○ exclude</td>
</tr>
</tbody>
</table>

Data Mining Toolkit
Solutions Found
Conditional Expression

Conditional Expressions

Conditional Statement

Data Mining Toolkit
Web-Based Data Mining Toolkit Example

Conditional Statement

If "StatusSex" = 'Single Male' AND "PurposeOfLoan" = 'Furniture' THEN target = 1

Variables:
- Base count: 1000
- Target count: 700
- Conditional count: 85
- Hit count: 63
- Miss count: 63
- True count: 63
- False count: 22
- Other count: 278

TruePos: 74.12%
FalsePos: 9.06%
Significance: 5.88%
AbsoluteSignificance: 5.88%
Entropy: 3.17

BASE 930
TARGET 700
CONDITIONAL 55
MISS 037
HIT 03
FALSE 22
OTHER 278
SIGMADISC 5.88%
ENTROPY 3.17

Data Mining Toolkit
Conditional Statements

![Web-Based Data Mining Toolkit Example](image1)

![Web-Based Data Mining Toolkit Example](image2)
Glossary Of Terms

? A complete or partial mask.

* A complete or partial mask.

absolute significance% Formula = abs(Significance%)

ACCESS The name of the driver used to connect to a Microsoft Access-based data source.

asc Short for ascending order.

Base Count The number of rows/records in the base table.

base table The table in the ODBC data source chosen to be data mined.

base threshold The minimum threshold for the Base% variable.

Base% The percentage of the Base having the condition.

bin A container for a column's unique value or range of values.

column name The name of a column in the base table. Used within the target expression or a conditional expression.

combining ANDing two or more conditional expressions to make a conditional statement.

ConditionalCount The number of rows/records in the base table where the condition holds.

cConditional expression An SQL statement representing a significant condition of the form:

"ColumnName" = Value

or

"ColumnName" BETWEEN LowerValue AND UpperValue.

conditional statement Two or more conditional expressions ANDed together.

continuous The values in a single column are continuous (e.g. the integers from 1 through to 10). As opposed to discrete.

desc Short for descending order.

discrete The values in a single column are discrete (e.g. apple, pear and banana). As opposed to continuous.

Entropy A measure of interestingness.

The default formula
aln( True / Base ) – aln( False / Base ) -aln( Miss / Base ) – aln( Other / Base )

produces a relative value between the number of positives and the number of negatives.

**FalseCount**

Formula = Conditional - True

**Hit**

Same as True

**hit count**

The number of rows in which both the target and the candidate condition hold. Same as true count.

**hit threshold**

The minimum threshold for the Hit% variable.

**Hit%**

Formula = ( Hit / Target ) * 100

**mask**

Used to obtain none, one or more conditional statements.

**Miss**

Formula = Target - Hit

**miss count**

The number of rows in which the candidate condition holds but the target does not. Same as negatives.

**negatives**

The number of rows in which the candidate condition holds but the target does not. Same as miss count.

**order by**

Specifies in what order the solutions are returned.

**OtherCount**

The number of rows in which neither the target or the candidate condition hold.

Formula = Base – ( Target + Conditional – Hit )

**positives**

The number of rows in which both the target and the candidate condition hold. Same as hit count.

**record**

A row within the base table

**row**

A record within the base table

**significance**

An indication of deviation from the norm. This can be either positive (i.e. over representation) or negative (i.e. under representation)

**significance threshold**

The minimum threshold for the AbsoluteSignificance% variable.

**Significance%**

Formula = ( ( Hit% - Base% ) / Base% ) * 100

Formula = ( True% - Target% ) / Target%

**solutions**

The number of significant conditional expressions.

**SQL**

Structured Query Language.

**string**

A data type in Win-Prolog denoted by `…` quote marks.

**target count**

The number of records/rows in the base table where the target

**Data Mining Toolkit**
**target expression**
The SQL expression (e.g. `"LoanApproved" = 2 AND "Foreign" = 'Yes'`) which forms the target of the data mining process.

**Target%**
Formula = **Target** / **Base**

**thresholds**
The minimum values for 'interestingness'.

**True**
Same as **Hit**

**true count**
The number of rows in which both the **target** and the candidate **condition** hold. Same as **hit count**.

**true threshold**
The minimum **threshold** for the **True%** variable

**True%**
Formula = ( **True** / **Conditional** ) * 100

**value**
Something in a column/row intersection cell.

**variables**
A Prolog structure.

**view**
The columns in the **base table** being analysed.
2.4. Rule Induction

Rule induction is one of the major forms of data mining and is perhaps the most common form of knowledge discovery in unsupervised learning systems. It is also perhaps the form of data mining that most closely resembles the process that most people think about when they think about data mining, namely “mining” for gold through a vast database. The gold in this case would be a rule that is interesting - that tells you something about your database that you didn’t already know and probably weren’t able to explicitly articulate (aside from saying “show me things that are interesting”).

Rule induction on a data base can be a massive undertaking where all possible patterns are systematically pulled out of the data and then an accuracy and significance are added to them that tell the user how strong the pattern is and how likely it is to occur again. In general these rules are relatively simple such as for a market basket database of items scanned in a consumer market basket you might find interesting correlations in your database such as:

- If bagels are purchased then cream cheese is purchased 90% of the time and this pattern occurs in 3% of all shopping baskets.

- If live plants are purchased from a hardware store then plant fertilizer is purchased 60% of the time and these two items are bought together in 6% of the shopping baskets.

The rules that are pulled from the database are extracted and ordered to be presented to the user based on the percentage of times that they are correct and how often they apply.

The bane of rule induction systems is also its strength - that it retrieves all possible interesting patterns in the database. This is a strength in the sense that it leaves no stone unturned but it can also be viewed as a weakness because the user can easily become overwhelmed with such a large number of rules that it is difficult to look through all of them. You almost need a second pass of data mining to go through the list of interesting rules that have been generated by the rule induction system in the first place in order to find the most valuable gold nugget amongst them all. This overabundance of patterns can also be problematic for the simple task of prediction because all possible patterns are
culled from the database there may be conflicting predictions made by equally interesting rules. Automating the process of culling the most interesting rules and of combing the recommendations of a variety of rules are well handled by many of the commercially available rule induction systems on the market today and is also an area of active research.

Applying Rule induction to Business
Rule induction systems are highly automated and are probably the best of data mining techniques for exposing all possible predictive patterns in a database. They can be modified to for use in prediction problems but the algorithms for combining evidence from a variety of rules comes more from rules of thumbs and practical experience.

In comparing data mining techniques along an axis of explanation neural networks would be at one extreme of the data mining algorithms and rule induction systems at the other end. Neural networks are extremely proficient and saying exactly what must be done in a prediction task (e.g. who do I give credit to / who do I deny credit to) with little explanation. Rule induction systems when used for prediction on the other hand are like having a committee of trusted advisors each with a slightly different opinion as to what to do but relatively well grounded reasoning and a good explanation for why it should be done.

The business value of rule induction techniques reflects the highly automated way in which the rules are created which makes it easy to use the system but also that this approach can suffer from an overabundance of interesting patterns which can make it complicated in order to make a prediction that is directly tied to return on investment (ROI).

What is a rule?
In rule induction systems the rule itself is of a simple form of “if this and this and this then this”. For example a rule that a supermarket might find in their data collected from scanners would be: “if pickles are purchased then ketchup is purchased”. Or

- If paper plates then plastic forks
- If dip then potato chips
- If salsa then tortilla chips

In order for the rules to be useful there are two pieces of information that must be supplied as well as the actual rule:

- Accuracy - How often is the rule correct?
- Coverage - How often does the rule apply?

Just because the pattern in the data base is expressed as rule does not mean that it is true all the time. Thus just like in other data mining algorithms it is important to recognize and make explicit the uncertainty in the rule. This is what the accuracy of the rule

Data Mining Toolkit
means. The coverage of the rule has to do with how much of the database the rule “covers” or applies to. Examples of these two measure for a variety of rules is shown in Table 2.2.

In some cases accuracy is called the confidence of the rule and coverage is called the support. Accuracy and coverage appear to be the preferred ways of naming these two measurements.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Accuracy</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>If breakfast cereal purchased then milk purchased.</td>
<td>85%</td>
<td>20%</td>
</tr>
<tr>
<td>If bread purchased then swiss cheese purchased.</td>
<td>15%</td>
<td>6%</td>
</tr>
<tr>
<td>If 42 years old and purchased pretzels and purchased dry roasted peanuts then beer will be purchased.</td>
<td>95%</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

_Table 2.2 Examples of Rule Accuracy and Coverage_

The rules themselves consist of two halves. The left hand side is called the antecedent and the right hand side is called the consequent. The antecedent can consist of just one condition or multiple conditions which must all be true in order for the consequent to be true at the given accuracy. Generally the consequent is just a single condition (prediction of purchasing just one grocery store item) rather than multiple conditions. Thus rules such as: “if x and y then a and b and c”.

**What to do with a rule**

When the rules are mined out of the database the rules can be used either for understanding better the business problems that the data reflects or for performing actual predictions against some predefined prediction target. Since there is both a left side and a right side to a rule (antecedent and consequent) they can be used in several ways for your business.

Target the antecedent. In this case all rules that have a certain value for the antecedent are gathered and displayed to the user. For instance a grocery store may request all rules that have nails, bolts or screws as the antecedent in order to try to understand whether discontinuing the sale of these low margin items will have any effect on other higher margin. For instance maybe people who buy nails also buy expensive hammers but wouldn’t do so at the store if the nails were not available.

Target the consequent. In this case all rules that have a certain value for the consequent can be used to understand what is associated with the consequent and perhaps what affects the consequent. For instance it might be useful to know all of the interesting rules that have “coffee” in their consequent. These may well be the rules that affect the purchases of coffee and that a store owner may want to put close to the coffee in order to increase the sale of both items. Or it might be the rule that the coffee manufacturer uses to determine in which magazine to place their next coupons.

Target based on accuracy. Some times the most important thing for a user is the _Data Mining Toolkit_
accuracy of the rules that are being generated. Highly accurate rules of 80% or 90% imply strong relationships that can be exploited even if they have low coverage of the database and only occur a limited number of times. For instance a rule that only has 0.1% coverage but 95% can only be applied one time out of one thousand but it will very likely be correct. If this one time is highly profitable that it can be worthwhile. This, for instance, is how some of the most successful data mining applications work in the financial markets - looking for that limited amount of time where a very confident prediction can be made.

Target based on coverage. Some times user want to know what the most ubiquitous rules are or those rules that are most readily applicable. By looking at rules ranked by coverage they can quickly get a high level view of what is happening within their database most of the time.

Target based on “interestingness”. Rules are interesting when they have high coverage and high accuracy and deviate from the norm. There have been many ways that rules have been ranked by some measure of interestingness so that the trade off between coverage and accuracy can be made.

Since rule induction systems are so often used for pattern discovery and unsupervised learning it is less easy to compare them. For example it is very easy for just about any rule induction system to generate all possible rules, it is, however, much more difficult to devise a way to present those rules (which could easily be in the hundreds of thousands) in a way that is most useful to the end user. When interesting rules are found they usually have been created to find relationships between many different predictor values in the database not just one well defined target of the prediction. For this reason it is often much more difficult to assign a measure of value to the rule aside from its interestingness. For instance it would be difficult to determine the monetary value of knowing that if people buy breakfast sausage they also buy eggs 60% of the time. For data mining systems that are more focused on prediction for things like customer attrition, targeted marketing response or risk it is much easier to measure the value of the system and compare it to other systems and other methods for solving the problem.

Caveat: Rules do not imply causality
It is important to recognize that even though the patterns produced from rule induction systems are delivered as if then rules they do not necessarily mean that the left hand side of the rule (the “if” part) causes the right hand side of the rule (the “then” part) to happen. Purchasing cheese does not cause the purchase of wine even though the rule if cheese then wine may be very strong.

This is particularly important to remember for rule induction systems because the results are presented as if this then that as many causal relationships are presented.

Types of databases used for rule induction
Typically rule induction is used on databases with either fields of high cardinality (many different values) or many columns of binary fields. The classical case of this is the super market basket data from store scanners that contains individual product names and
Data Mining Toolkit

quantities and may contain tens of thousands of different items with different packaging that create hundreds of thousands of SKU identifiers (Stock Keeping Units).

Sometimes in these databases the concept of a record is not easily defined within the database - consider the typical Star Schema for many data warehouses that store the supermarket transactions as separate entries in the fact table. Where the columns in the fact table are some unique identifier of the shopping basket (so all items can be noted as being in the same shopping basket), the quantity, the time of purchase, whether the item was purchased with a special promotion (sale or coupon). Thus each item in the shopping basket has a different row in the fact table. This layout of the data is not typically the best for most data mining algorithms which would prefer to have the data structured as one row per shopping basket and each column to represent the presence or absence of a given item. This can be an expensive way to store the data, however, since the typical grocery store contains 60,000 SKUs or different items that could come across the checkout counter. This structure of the records can also create a very high dimensional space (60,000 binary dimensions) which would be unwieldy for many classical data mining algorithms like neural networks and decision trees. As we’ll see several tricks are played to make this computationally feasible for the data mining algorithm while not requiring a massive reorganization of the database.

Discovery

The claim to fame of these ruled induction systems is much more so for knowledge discover in unsupervised learning systems than it is for prediction. These systems provide both a very detailed view of the data where significant patterns that only occur a small portion of the time and only can be found when looking at the detail data as well as a broad overview of the data where some systems seek to deliver to the user an overall view of the patterns contained n the database. These systems thus display a nice combination of both micro and macro views:

- Macro Level - Patterns that cover many situations are provided to the user that can be used very often and with great confidence and can also be used to summarize the database.

- Micro Level - Strong rules that cover only a very few situations can still be retrieved by the system and proposed to the end user. These may be valuable if the situations that are covered are highly valuable (maybe they only apply to the most profitable customers) or represent a small but growing subpopulation which may indicate a market shift or the emergence of a new competitor (e.g. customers are only being lost in one particular area of the country where a new competitor is emerging).

Prediction

After the rules are created and their interestingness is measured there is also a call for performing prediction with the rules. Each rule by itself can perform prediction - the consequent is the target and the accuracy of the rule is the accuracy of the prediction. But because rule induction systems produce many rules for a given antecedent or

Data Mining Toolkit
consequent there can be conflicting predictions with different accuracies. This is an opportunity for improving the overall performance of the systems by combining the rules. This can be done in a variety of ways by summing the accuracies as if they were weights or just by taking the prediction of the rule with the maximum accuracy.

Table 2.3 shows how a given consequent or antecedent can be part of many rules with different accuracies and coverages. From this example consider the prediction problem of trying to predict whether milk was purchased based solely on the other items that were in the shopping basket. If the shopping basket contained only bread then from the table we would guess that there was a 35% chance that milk was also purchased. If, however, bread and butter and eggs and cheese were purchased what would be the prediction for milk then? 65% chance of milk because the relationship between butter and milk is the greatest at 65%? Or would all of the other items in the basket increase even further the chance of milk being purchased to well beyond 65%? Determining how to combine evidence from multiple rules is a key part of the algorithms for using rules for prediction.

<table>
<thead>
<tr>
<th>Antecedent</th>
<th>Consequent</th>
<th>Accuracy</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>bagels</td>
<td>cream cheese</td>
<td>80%</td>
<td>5%</td>
</tr>
<tr>
<td>bagels</td>
<td>orange juice</td>
<td>40%</td>
<td>3%</td>
</tr>
<tr>
<td>bagels</td>
<td>coffee</td>
<td>40%</td>
<td>2%</td>
</tr>
<tr>
<td>bagels</td>
<td>eggs</td>
<td>25%</td>
<td>2%</td>
</tr>
<tr>
<td>bread</td>
<td>milk</td>
<td>35%</td>
<td>30%</td>
</tr>
<tr>
<td>butter</td>
<td>milk</td>
<td>65%</td>
<td>20%</td>
</tr>
<tr>
<td>eggs</td>
<td>milk</td>
<td>35%</td>
<td>15%</td>
</tr>
<tr>
<td>cheese</td>
<td>milk</td>
<td>40%</td>
<td>8%</td>
</tr>
</tbody>
</table>

*Table 2.3 Accuracy and Coverage in Rule Antecedents and Consequents*

**The General Idea**

The general idea of a rule classification system is that rules are created that show the relationship between events captured in your database. These rules can be simple with just one element in the antecedent or they might be more complicated with many column value pairs in the antecedent all joined together by a conjunction (item1 and item2 and item3 ... must all occur for the antecedent to be true).

The rules are used to find interesting patterns in the database but they are also used at times for prediction. There are two main things that are important to understanding a rule:

**Accuracy** - Accuracy refers to the probability that if the antecedent is true that the precedent will be true. High accuracy means that this is a rule that is highly dependable.
Coverage - Coverage refers to the number of records in the database that the rule applies to. High coverage means that the rule can be used very often and also that it is less likely to be a spurious artifact of the sampling technique or idiosyncrasies of the database.

The business importance of accuracy and coverage

From a business perspective accurate rules are important because they imply that there is useful predictive information in the database that can be exploited - namely that there is something far from independent between the antecedent and the consequent. The lower the accuracy the closer the rule comes to just random guessing. If the accuracy is significantly below that of what would be expected from random guessing then the negation of the antecedent may well in fact be useful (for instance people who buy denture adhesive are much less likely to buy fresh corn on the cob than normal).

From a business perspective coverage implies how often you can use a useful rule. For instance you may have a rule that is 100% accurate but is only applicable in 1 out of every 100,000 shopping baskets. You can rearrange your shelf space to take advantage of this fact but it will not make you much money since the event is not very likely to happen. Table 2.4. Displays the trade off between coverage and accuracy.

<table>
<thead>
<tr>
<th>Coverage High</th>
<th>Accuracy Low</th>
<th>Rule is rarely correct but can be used often.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage Low</td>
<td>Accuracy High</td>
<td>Rule is rarely correct but can be only rarely used.</td>
</tr>
</tbody>
</table>

Table 2.4 Rule coverage versus accuracy.

Trading off accuracy and coverage is like betting at the track

An analogy between coverage and accuracy and making money is the following from betting on horses. Having a high accuracy rule with low coverage would be like owning a race horse that always won when he raced but could only race once a year. In betting, you could probably still make a lot of money on such a horse. In rule induction for retail stores it is unlikely that finding that one rule between mayonnaise, ice cream and sardines that seems to always be true will have much of an impact on your bottom line.

How to evaluate the rule

One way to look at accuracy and coverage is to see how they relate so some simple statistics and how they can be represented graphically. From statistics coverage is simply the a priori probability of the antecedent and the consequent occurring at the same time. The accuracy is just the probability of the consequent conditional on the precedent. So, for instance the if we were looking at the following database of super market basket scanner data we would need the following information in order to calculate the accuracy and coverage for a simple rule (let’s say milk purchase implies eggs purchased).

\[ T = 100 \] Total number of shopping baskets in the database.

Data Mining Toolkit
E = 30 = Number of baskets with eggs in them.
M = 40 = Number of baskets with milk in them.
B = 20 = Number of baskets with both eggs and milk in them.

Accuracy is then just the number of baskets with eggs and milk in them divided by the number of baskets with milk in them. In this case that would be 20/40 = 50%. The coverage would be the number of baskets with milk in them divided by the total number of baskets. This would be 40/100 = 40%. This can be seen graphically in Figure 2.5.

Notice that we haven’t used E, the number of baskets with eggs in these calculations. One way that eggs could be used would be to calculate the expected number of baskets with eggs and milk in them based on the independence of the events. This would give us some sense of how unlikely and how special the event is that 20% of the baskets have both eggs and milk in them. Remember from the statistics section that if two events are independent (have no effect on one another) that the product of their individual probabilities of occurrence should equal the probability of the occurrence of them both together.

If the purchase of eggs and milk were independent of each other one would expect that 0.3 x 0.4 = 0.12 or 12% of the time we would see shopping baskets with both eggs and milk in them. The fact that this combination of products occurs 20% of the time is out of
the ordinary if these events were independent. That is to say there is a good chance that
the purchase of one effects the other and the degree to which this is the case could be
calculated through statistical tests and hypothesis testing.

Defining “interestingness”
One of the biggest problems with rule induction systems is the sometimes overwhelming
number of rules that are produced. Most of which have no practical value or interest.
Some of the rules are so inaccurate that they cannot be used, some have so little
coverage that though they are interesting they have little applicability, and finally many of
the rules capture patterns and information that the user is already familiar with. To combat
this problem researchers have sought to measure the usefulness or interestingness of
rules.

Certainly any measure of interestingness would have something to do with accuracy and
coverage. We might also expect it to have at least the following four basic behaviors:

- Interestingness = 0 if the accuracy of the rule is equal to the background accuracy
(a priori probability of the consequent). The example in Table 2.5 shows an
example of this. Where a rule for attrition is no better than just guessing the overall
rate of attrition.

- Interestingness increases as accuracy increases (or decreases with decreasing
accuracy) if the coverage is fixed.

- Interestingness increases or decreases with coverage if accuracy stays fixed

- Interestingness decreases with coverage for a fixed number of correct responses
(remember accuracy equals the number of correct responses divided by the
coverage).

<table>
<thead>
<tr>
<th>Antecedent</th>
<th>Consequent</th>
<th>Accuracy</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;no constraints&gt;</td>
<td>then customer will attrite</td>
<td>10%</td>
<td>100%</td>
</tr>
<tr>
<td>If customer balance &gt; $3,000</td>
<td>then customer will attrite</td>
<td>10%</td>
<td>60%</td>
</tr>
<tr>
<td>If customer eyes = blue</td>
<td>then customer will attrite</td>
<td>10%</td>
<td>30%</td>
</tr>
<tr>
<td>If customer social security</td>
<td>then customer will attrite</td>
<td>100%</td>
<td>0.0000001%</td>
</tr>
<tr>
<td>number = 144 30 8217</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.5 Uninteresting rules

There are a variety of measures of interestingness that are used that have these general
characteristics. They are used for pruning back the total possible number of rules that
might be generated and then presented to the user.

Other measures of usefulness
Another important measure is that of simplicity of the rule. This is an important solely for
Data Mining Toolkit
the end user. As complex rules, as powerful and as interesting as they might be, may be
difficult to understand or to confirm via intuition. Thus the user has a desire to see
simpler rules and consequently this desire can be manifest directly in the rules that are
chosen and supplied automatically to the user.

Finally a measure of novelty is also required both during the creation of the rules - so that
rules that are redundant but strong are less favored to be searched than rules that may
not be as strong but cover important examples that are not covered by other strong
rules. For instance there may be few historical records to provide rules on a little sold
grocery item (e.g., mint jelly) and they may have low accuracy but since there are so few
possible rules even though they are not interesting they will be “novel” and should be
retained and presented to the user for that reason alone.

Rules vs. Decision trees

Decision trees also produce rules but in a very different way than rule induction systems.
The main difference between the rules that are produced by decision trees and rule
induction systems is as follows:

Decision trees produce rules that are mutually exclusive and collectively exhaustive with
respect to the training database while rule induction systems produce rules that are not
mutually exclusive and might be collectively exhaustive.

In plain English this means that for an given record there will be a rule to cover it and
there will only be one rule for rules that come from decision trees. There may be many
rules that match a given record from a rule induction system and for many systems it is
not guaranteed that a rule will exist for each and every possible record that might be
encountered (though most systems do create very general default rules to capture these
records).

The reason for this difference is the way in which the two algorithms operate. Rule
induction seeks to go from the bottom up and collect all possible patterns that are
interesting and then later use those patterns for some prediction target. Decisions trees
on the other hand work from a prediction target downward in what is known as a “greedy”
search. Looking for the best possible split on the next step (i.e., greedily picking the best
one without looking any further than the next step). Though the greedy algorithm can
make choices at the higher levels of the tree which are less than optimal at the lower
levels of the tree it is very good at effectively squeezing out any correlations between
predictors and the prediction. Rule induction systems on the other hand retain all
possible patterns even if they are redundant or do not aid in predictive accuracy.

For instance, consider that in a rule induction system that if there were two columns of
data that were highly correlated (or in fact just simple transformations of each other) they
would result in two rules whereas in a decision tree one predictor would be chosen and
then since the second one was redundant it would not be chosen again. An example
might be the two predictors annual charges and average monthly charges (average
monthly charges being the annual charges divided by 12). If the amount charged was
predictive then the decision tree would choose one of the predictors and use it for a split
point somewhere in the tree. The decision tree effectively “squeezed” the predictive

Data Mining Toolkit
value out of the predictor and then moved onto the next. A rule induction system would on the other hand create two rules. Perhaps something like:

If annual charges > 12,000 then default = true 90% accuracy
If average monthly charges > 1,000 the default = true 90% accuracy.

In this case we’ve shown an extreme case where two predictors were exactly the same, but there can also be less extreme cases. For instance height might be used rather than shoe size in the decision tree whereas in a rule induction system both would be presented as rules.

Neither one technique or the other is necessarily better though having a variety of rules and predictors helps with the prediction when there are missing values. For instance if the decision tree did choose height as a split point but that predictor was not captured in the record (a null value) but shoe size was the rule induction system would still have a matching rule to capture this record. Decision trees do have ways of overcoming this difficulty by keeping “surrogates” at each split point that work almost as well at splitting the data as does the chosen predictor. In this case shoe size might have been kept as a surrogate for height at this particular branch of the tree.

Another commonality between decision trees and rule induction systems

One other thing that decision trees and rule induction systems have in common is the fact that they both need to find ways to combine and simplify rules. In a decision tree this can be as simple as recognizing that if a lower split on a predictor is more constrained than a split on the same predictor further up in the tree that both don’t need to be provided to the user but only the more restrictive one. For instance if the first split of the tree is age <= 50 years and the lowest split for the given leaf is age <= 30 years then only the latter constraint needs to be captured in the rule for that leaf.

Rules from rule induction systems are generally created by taking a simple high level rule and adding new constraints to it until the coverage gets so small as to not be meaningful. This means that the rules actually have families or what is called “cones of specialization” where one more general rule can be the parent of many more specialized rules. These cones then can be presented to the user as high level views of the families of rules and can be viewed in a hierarchical manner to aid in understanding.
Appendix B: Setting Up an ODBC Data Source

In this appendix, we are going to go through the process of setting up an ODBC data source.

Click on the ‘Control Panel’ menu option on the Start Menu. The Control Panel dialog will appear.

Double-click on the ‘Data Sources (ODBC)’ icon. The ODBC Data Source Administrator dialog will appear.

The ‘User DSN’ tab allows you to set up a database files as an ODBC data source for your own use.

The ‘System DSN’ tab allows you to set up a database files as an ODBC data source for other users of your computer to use. This is the one to use if your ODBC data source is to be accessed via a ProWeb application.

Click on the ‘Add’ button to add a new ODBC data source. The Create New Data Source
Appendix B: Setting Up an ODBC Data Source

Data Mining Toolkit dialog will appear.

Select the driver for your data source; in the case of a Microsoft Access .MDB file, select ‘Microsoft Access Driver (*.mdb)’ and then click on Finish. The ODBC Microsoft Access Setup dialog will appear.

Type in the name for the ODBC data source in the ‘Data Source Name:’ field. We are going to add ‘Statlog’ as our new ODBC data source. Click on the ‘Select...’ button; the Select Database dialog will appear.

Data Mining Toolkit
Navigate to where your chosen database file is and select it. STATLOG.MDB will be in a different location on your computer. Click on OK when done. The ODBC Microsoft Access Setup dialog will reappear.

Click on OK. The ODBC Data Source Administrator dialog will reappear; the ODBC data source you have just added (i.e. Statlog) will appear in the list.
Appendix B: Setting Up an ODBC Data Source

An ODBC User data source stores information about how to connect to the indicated data provider. A User data source is only visible to you, and can only be used on the current machine.